Neocolonial/economic bias of the fossil record and evolution

Charles Darwin’s ideas on the evolution of species through natural selection became imprinted by his participation in the second survey expedition of HMS Beagle (1831-1836), commanded by Captain Robert Fitzroy. The voyage aimed at comprehensive surveys along its circumnavigation, Darwin having been engaged to provide geological expertise. At that time he would have been best described as a ‘natural historian’ and his only qualification was that he had an ordinary degree (BA) from Cambridge  and had read widely in natural science: had it not been for joining the Beagle he may have become a country parson.

The voyage was a maritime venture typical of British and other European imperialism and colonisation during the early 19th century – a survey not only of geodesy, geography and natural science but also of the economic potential of the places that it visited. European science benefitted immensely from such voyages and overland expeditions. Today, research in the natural sciences is still dominated by academics from the better-off nations. Significantly, the charting of the ocean floor during the 20th and 21st centuries has been conducted almost exclusively by those nations with a global reach: plate tectonics is a science for the very wealthy. It is only in the last 60 years that geological mapping of the bulk of the continental surface has been relinquished by former colonial powers to local surveys. In the majority of cases the geological surveys of these now independent countries are grossly underfunded and they still largely depend on maps produced more than half a century ago by their former rulers.

In the 19th century global palaeontology, botany and zoology, which lie at the roots of evolutionary studies, shipped specimens to the museums and universities of the colonising powers. Their scientists today still retain a near monopoly of access to those old collections. Now it is economic power that enables continued collection by researchers mainly from the former colonising countries and their institutions. There are a few exceptions, such as the rapid rise of Chinese natural science in a mere three to four decades, which has become a major ‘player’ in early and Mesozoic evolution. Gradually, hominin palaeontology has drawn in local scientists from countries well-endowed with productive sites, such as Kenya, Tanzania and Ethiopia, yet funding remains largely external. Nussaïbah Raja at Friedrich-Alexander University in Erlagen, Germany and colleagues from Britain, South Africa, Brazil and India  (Raja, N.B. et al. 2021. Colonial history and global economics distort our understanding of deep-time biodiversity. Nature Ecology & Evolution, v. 6, p. 1-10 ; DOI: 10.1038/s41559-021-01608-8) have used the vast Paleobiology Database (PBDB) to assess which countries are the main influence over global fossil collection.

Proportion of publications on national fossil data with a local lead author, for regions of the world. (Credit: Raja et al., Extended Data Fig 9)

Their findings are unsurprising. The 29 thousand papers referenced by PBDB that give fossil-occurrence data from the last 30 years involved 97% of authors who were resident in high- and upper-middle-income countries: more than a third from the US and the rest of the top ten from, in order, Germany, Britain, France, Canada, Russia, China, Australia, Italy and Spain: and 92% of the publications were published in English. Interestingly, it appears that old colonial ties still exert an influence on palaeontology research in former colonies: a quarter of that conducted in Morocco, Tunisia and Algeria was done by scientists based in France; 10% of work in South Africa and Egypt was authored by UK-based researchers; and 17% of Namibian palaeontology was conducted by scientists from Germany.  When it comes to first authors of papers about fossils, local scientists get increasingly short shrift as the overall wealth of their homelands decreases. The authors of the PBDB study devised an index of what they call ‘parachute science’, based on the proportion of a country’s fossil data that was contributed by foreign teams that lacked any local co-authors.

The ‘Parachute Index’ for the ten countries most exploited by external palaeontological researchers. (Credit: Raja et al., Fig 3b)

This lack of engagement with and assistance for local scientists ‘hinders local scientists and domestic scientific development, by favouring foreign input and exacerbating power imbalances between those from foreign countries and those located ‘on the ground’. Furthermore, this can also lead to mistrust by local scientists towards foreign researchers, affecting future collaborations’. Scientific ‘colonialism’ is still pervasive for much of the world, and is a major force in imposing opinions on evolution in particular. Raja and colleagues rightly call for external economic and ‘intellectual’ power over research to be replaced by ‘equitable, ethical and sustainable collaboration’. Without that, scientific expertise will advance at a very slow pace in less well-endowed regions, with the same-old, same-old beneficiaries getting the benefits.

See also: Callaway, E. 2022. How rich countries skew the fossil record.Nature News 13 January 2022. Adame, F. 2021. Meaningful collaborations can end ‘helicopter research’. Nature Careers, 29 June 2021.

Holocene migrations of people into Britain

People assigned to a variety of human species: Homo sapiens H. neanderthalensis (Swanscombe, 400 ka and several later times ) H heidelbergensis (Boxgrove, ca 500 ka, )H. antecessor (Happisburgh, ca 950 ka) – have left signs of their presence in Britain. Human occupancy has largely depended on climate. Around 9 times since the first known human presence here, much of Britain was repeatedly buried by glacial ice to become a frigid desert for tens of thousands of years. Between 180 and 60 ka only a couple of flint artefacts found in road excavations in Kent hint at Neanderthal visitors. For most of the Late Pleistocene the archipelago seems to have been devoid of humans. Arguably, Europe’s first known anatomically modern humans occupied several caves in Devon, Derbyshire and South Wales as early as around 43 ka, while climate was cooling, only to abandon Britain during the Last Glacial Maximum (24 to 18 ka ago). As climate warmed again thereafter, sporadic occupation by Late Palaeolithic hunter-gatherers occurred up to the sudden onset of the frigid Younger Dryas (12.9 ka). Once warming returned quickly 11,700 years ago, sea level was low enough for game and hunter gatherers to migrate to Britain; this time for permanent occupancy. Bones of the earliest known of these Mesolithic people have yielded DNA and a surprise: they were dark skinned and so far as we can tell remained so until the beginning of Neolithic farming in Britain around 6100 years ago. The DNA of most living Britons with pale skins retains up to 10% of inheritance from these original hunter gatherers.  Much the same is known from elsewhere in NW Europe. In the early Holocene it was possible to walk across what is now the southern North Sea thanks to Doggerland. Following a tsunami at around 8.2 ka this rich area of wetland vanished, so that all later migration demanded sea journeys.  

Mesolithic people remained in occupation of the British Isles for another two millennia. A wealth of evidence, summarised nicely in Ray, K. & Thomas, J. 2018, Neolithic Britain, Oxford University Press, suggests that there was a lengthy period of overlap between Mesolithic and Neolithic occupation around 4100 BCE. The main difference between the two groups was that Neolithic communities subsisted on domesticated grains and animals, while those of the Mesolithic consumed wild resources. Cultural clues in archaeological finds, however, suggest a lot in common, such as the erection of various kinds of monuments. Posts of tree trunks, sometimes arranged in lines, were raised in the Mesolithic and lines of probably ritual pits were dug. Both ‘traditions’ continued into the Neolithic and evolved to stone monuments, to which were added burials of different kinds. It is worth noting that Stonehenge was developed on a site that held much earlier, large totem-pole like posts, with a nearby spring that had hosted regular gatherings of Mesolithic people. Signs of Mesolithic occupation in Britain extend just as widely as do those of Neolithic practices. A study of DNA from 7 Mesolithic skeletons and 67 of early Neolithic age (Brace, S. and 20 others 2019. Population Replacement in Early Neolithic Britain. Nature Ecology & Evolution, v. 3, p. 765-771; DOI: 10.1038/s41559-019-0871-9) revealed that early Neolithic people did not wipe out the genetic make-up (either by complete displacement or annihilation) of their predecessors. About 20 to 30% of Neolithic DNA was inherited from them; as would be expected from assimilation of a probably much smaller number of hunter-gatherers into a larger population  of  immigrants who brought farming and herding from Asian Turkey (Anatolia). Such ‘hybrid’ genetics was widespread in Europe and they are referred to as the Early European Farmers (EEF). As Ray and Thomas suggest, aspects of Mesolithic culture may have been adopted by the newcomers across the British Isles from Orkney to Wiltshire.

Around 2400 BCE the earliest Neolithic ceremonial site at Brodgar on Orkney was destroyed to the accompaniment of an enormous feast that consumed several hundred cattle. At about the same time several men, whose tooth geochemistry indicated an origin in the European Alps, were buried on Salisbury Plain together with the earliest metal artefacts known from Britain (copper knives), the accoutrements of archery and distinctive, bell-shaped pottery beakers. Stonehenge was ‘remodelled’ shortly afterwards, with the addition of its giant trilithons, four of which were later adorned with carvings of metal axes and daggers. The Early Bronze (or Chalcolithic) Age had arrived! A 2018 study of ancient DNA from Bronze Age burials in Europe suggested a far more drastic swamping of Neolithic genetic heritage by the ‘Beaker people’ (Olalde, I. and a great many others 2018. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, v. 555, p. 190-196; DOI: 10.1038/nature25738). The skeletons from Britain analysed by Olalde et al. apparently suggested that, within a few hundred years, up to 90% of the Neolithic gene pool had been removed from the British population. Who were these people who used metals and the distinctive Bell Beakers, where did they come from and what did they do?

The closest match to the British and western European Bronze Age DNA was that associated with the Yamnaya people from the steppes of SE Ukraine and Southern Russia who had developed a culture centred on herding. They had also adopted the wheel from people of the Mesopotamian plains and had domesticated the horse for riding and pulling carts: ideal for their semi-nomadic lifestyle and for moving en masse. After 3000 BCE they spread into Europe, as widely recorded by their distinctive beakers and the presence of their DNA in the genomes of later Europeans. Their burials – in ‘kurgans’ – resembled the round barrows that appeared on Salisbury Plain and elsewhere during the Bronze Age. The DNA replacement data from 2018 were limited and held few clues to how it happened. One possibility for such a dramatic change could be a violent takeover that drove down the population of British Neolithic people. To address the broader influence of migration in more detail and over a loner time span, a team led by the Universities of York and Vienna, and Harvard Medical School (Patterson, N. and a great many others 2021. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature, early online release; DOI: 10.1038/s41586-021-04287-4) used ancient DNA from 793 individuals excavated in Britain (416 individuals) and continental Europe (377) from Bronze- to Iron Age sites (2300 to ~100 BCE).

The proportion of Early European Farmers DNA in British individuals from the Bronze Age (2400 BCE) to the Iron Age (750 BCE to 43 CE). Note the ‘fuzzy’ nature of the data, and that the decline in EEF in British individuals was not as great as earlier analyses had shown. Remarkably, the ‘Amesbury Archer’, who brought the first metals to Britain, had a higher proportion of EEF ancestry than the Early Bronze-Age average. (Credit: Patterson et al. Fig. 3)

The new data from Britain suggest that the migrants, who crossed the Channel later in the Bronze Age, were of mixed ethnicity, but most carried EEF genes. The influence of earlier migrants from the Yamnaya heartlands is present, but so too are relics of Mesolithic ancestry. Interestingly, the British data show a much larger increase in the genes associated with lactase persistence, which marks the ability of adults to digest milk, than was apparent in the wider European population (50% compared with about 7% in Eastern Europeans of the time). Whatever the impact of the first influx of metal-using people – it may have been culturally decisive in Britain – by the end of the Bronze Age the EEF ‘signature’ had increased in peoples’ genomes. Rather than some kind of invasion, the influx was more likely to have been a sustained movement of people to Britain over several hundred years By the Iron Age, almost half the ancestry of Britain, particularly in England and Wales, was once again predominantly of EEF origin (around 40% of the mixture), but culture had become completely different. There are even suggestions that the influx brought with it the beginnings of Celtic languages. Yet the data leave a great deal of further analysis to be undertaken.

See also: Drury, S.A. 2019. Genetics and the peopling of Britain: We are all hybrids, People and Nature; Ancient DNA Analysis Reveals Large Scale Migrations Into Bronze Age Britain, SciTechDaily, 28 December 2021.

Some Homo naledi news

In 2015 the remains of about 15 hominins, new to science, were found in a near-inaccessible South African cave (See: The ‘star’ hominin of South Africa;  September 2015), that number having risen to more than 24 at the time of writing. The ‘star’ status of Homo naledi (named after the cave’s name Naledi meaning star in the local Sotho language) arose partly from an extraordinary barrage of promotion by the organisers of the expedition that unearthed them (probably to boost fundraising). But it was indeed one of the most extraordinary discoveries in palaeoanthropology. The remains were recovered by a team of women archaeologists who small and lithe enough to wriggle through a maze of extremely narrow cave passages. The bones in the remote chamber were complete, with no sign of physical trauma, except gnawing by snails and beetles. Few hominin fossils were found in the more accessible parts of the cave. One likely explanation was that a living H. naledi group had deliberately carried the bodies through the cave system for burial – at less than 1.5 m tall with a slender build they could have done this far more easily than the modern excavators. A plausible alternative is that a group of H. naledi scrambled deep into the cave on being panicked by large predators, and suffocated as CO2 built-up to toxic levels.

Map of the Rising Star cave system in Gautong Province South Africa. The yellow dot marks the chamber where Homo naledi fossils were first found; the red one is the site of a new discovery. (Credit: Elliott et al 2021, PaleoAnthropology. Issue 1.64, Fig. 1)

Initially, the bones were estimated to be 2 Ma old. The fossils are so well-preserved that most aspects of their functional anatomy are known in great detail, such as the articulation of their hands and feet. Although not a single tool was found in the cave deposit, to get into the far reaches of the labyrinthine cave system they must have lit the way with firebrands. The anatomy of H. naledi is far more advanced than that of contemporary H. habilis. The discoverers speculated that the group may have been a species that gave direct rise to the later H. ergaster and erectus, and ultimately us. Alternatively, the individuals’ diminutive size suggested parallels with much later H. floresiensis and H. luzonensis from the other side of the world. Much of this hype was later blunted by more reliable geochronology indicating an age of between 236 ka and 335 ka: i.e. about the time when anatomically modern humans were already roaming Africa. A more plausible conclusion, therefore, is that H. naledi was one of at least 6 hominin groups that co-occupied the late-Pleistocene world: i.e. similar to H. floresiensis.

Now the partial skull and half a dozen teeth of an immature H. naledi has been recovered from another remote chamber in the cave system (Brophy, J.K. et al. 2021. Immature Hominin Craniodental Remains From a New Locality in the Rising Star Cave System, South Africa. PaleoAnthropology. Issue 1.64; DOI: 10.48738/2021.iss1.64). Fossils of young humans are rare, their bones being thinner and much more fragile than those of adults, so the skull had to be reconstructed from 28 fragments. Unlike the older individuals from the main chamber, there are no other bones associated with the skull. Oddly, the supposedly young H. naledi’s brain volume (between 480 to 610 cm3) is between 90 to 95 % that of adults. A possible explanation for this degree of similarity is that these beings reached maturity far more quickly than do anatomically modern humans. The evidence for youth is based on close dental similarity with those of other ‘immature’ specimens from the main bone deposit, and most importantly that two of the teeth are demed to be deciduous (‘milk’) teeth. Yet the ‘milk’ teeth show severely chipped enamel as do the permanent teeth of more mature specimens, to the extent of being unique in the fossil record of hominins. Clearly, their diet was sand-rich.

Shortly after publication in the journal PaleoAnthropology during early November 2021 the world’s media leapt on the two papers rorting these new finds. Yet it is hard to judge why it was deemed by science journalists to have truly popular appeal. It actually adds very little to the H. naledi story, apart from specialised anatomical description. Despite the skull being bereft of the rest of the individual’s body, the authors ‘…regard it as likely that some hominin agency was involved in the deposition of the cra­nial material’.  Perhaps the ‘star’ status was rekindled because the press release from the University of the Witwatersrand used the word ‘child’ again and again – a sure fire way of getting wide attention. The published papers properly refers to it as an ‘immature hominin individual’, which it undoubtedly is.  The same sort of attention came the way of Raymond Dart from a small skull of Australopithecus africanus found in 1924 by workers in a limestone quarry – he called it ‘the Taung Child’. Of course, H. naledi is one of the best-preserved hominins known. But how does its current newsworthiness rank above H. floresiensis? Now, that was a surprise, but the hype about that tiny human has died down. And when H. naledi was originally deemed to be 2 Ma old, it too was astonishing. But since its true, quite young age was determined, it too is no longer such a big deal.

Interestingly, South African scientists self-proclaimed the name ‘Cradle of Humankind’ for the area in Gautung Province close to Johannesburg, which is rich in limestone caves and has a long history of fossil hominin discoveries since Raymond Dart’s Taung Child. But the earliest anatomically modern human remains are from Jebel Irhoud in Morocco, and the oldest known hominin fossils are from Chad, and most advances in early hominin evolution have stemmed from Ethiopia, Kenya and Tanzania.   The fossiliferous part of Gautung Province rightly has World Heritage status, but not under that name. Instead it is called more accurately ‘Fossil Hominid Sites of South Africa”

See also: Partial skull of a child of Homo naledi: Insight into stages of life of remarkable species. Science Daily, November 2021.

A cometary air-burst over South America 12 thousand years ago

Earth-logs has previously covered quite a few hypotheses involving catastrophic astronomical events of the past, often returning to them as new data and ideas emerge. They range from giant impacts, exemplified in the mass extinction at the K-Pg boundary to smaller-scale events that may have coincided with important changes in climate, such as the sudden onset of the Younger Dryas, and a few that have been suggested as agencies affecting local human populations such as the demise of Sodom by a cosmogenic air-burst. Some of the papers that spurred the Earth-pages posts have been widely regarded in the geoscience community. Yet there have been others that many have doubted, and even condemned. For instance, data used by the consortium that suggested an extraterrestrial event triggered the frigid millennium of the Younger Dryas (YD) have been seriously and widely questioned. A sizeable number of the team that were under close scrutiny in 2008 joined others in 2019 to back the YD air-burst hypothesis again, using similarly ‘persuasive’ data from Chile. Members of the original consortium of academics also contributed to the widely disputed notion of a cosmic air-burst having destroyed a Bronze Age urban centre in Jordan that may, or may not, have been the site of the Biblical Sodom. Again, they cited almost the ‘full monty’ of data for high-energy astronomical events, but again no crater or substantial melt glass, apart from tiny spherules. Now another paper on much the same theme, but none of whose authors contributed to those based on possibly ‘dodgy’ data, has appeared in Geology (Schultz, P.H. et al. 2021. Widespread glasses generated by cometary fireballs during the Late Pleistocene in the Atacama Desert, Chile. Geology, published online November 2, 2021; doi: 10.1130/G49426.1).

Peter Schultz of Brown University, USA and colleagues from the US and Chile make no dramatic claims for death and destruction or climate destabilisation, and simply report a fascinating discovery. In 2012 one of the authors, Nicolas Blanco of the Universidad Santo Tomás in Santiago, Chile, found slabs made of glassy material up to half a metre across. They occurred in several 1 to 3 km2 patches over a wide area of the Atacama Desert. Resting on Pleistocene glacio-fluvial sediments, they had been exposed by wind erosion of active sand dunes. The glass is dark green to brown and had been folded while still molten. For the glass slabs to be volcanic bombs presupposes a nearby volcano, but although Chile does have volcanoes none of the active vents are close enough to have flung such large lumps of lava into the glass-strewn area. The glassy material also contains traces of vegetation, and varies a great deal in colour (brown to green). Its bulk chemical composition suggests melting of a wide variety of surface materials: quite unlike volcanic glasses.

Chilean glass occurrence: panorama of large glass fragments in the Atacama Desert; a specimen of the glass; thin section of glass showing bubbles and dusty particles (Credit: Schultz et al. 2021; Figs 1B, 2D and 2C)

Microscopic examination of thin sections of the glasses also reveals nothing resembling lava, except for gas bubbles. The slabs are full of exotic fragments, some of which closely resemble mineral assemblages found in meteorites, including nickel-rich sulfides embedded in ultramafic material. Others are calcium-, aluminium- and titanium-rich inclusions, such as corundum (Al2O3) and perovskite (CaTiO3), thought to have originated as very-high temperature condensates from the pre-solar nebula: like the celebrated ‘white inclusions’ in the Allende meteorite. Some minute grains resemble dust particles recovered by the NASA Stardust mission to Comet 81P/Wild-2 which returned samples to Earth in 2006. Zircon grains in the glasses, presumed to be locally derived, have been decomposed to zirconium oxide (baddeleyite), suggesting melting temperatures greater than 1670°C: far above the highest temperature found in lavas (~1200°C). Interestingly, the green-yellow silica glass strewn over the Sahara Desert around the southern Egypt-Libya border also contains baddeleyite and cometary dusts, together with anomalously high platinum-group elements and nanodiamonds that are not reported from the Chilean glass. Much prized by the elite of pharaonic Egypt and earlier makers of stone tools, the Saharan glass is ascribed to shock heating of the desert surface by a cometary nucleus that exploded over the Sahara. Unsurprisingly, Schultz et al. come to the same conclusion.

Any object entering the Earth’s atmosphere does so at speeds in excess of our planet’s escape velocity (11.2 km s-1). Not only does that result in heating by friction with the air, but much of the kinetic energy of hypersonic entry goes into compressing air through shock waves, especially with objects larger than a few tens of metres. Such adiabatic compression can produce temperatures >>10 thousand °C. Hence the ‘fireballs’ associated with large meteorites. With very large air-bursts the flash of radiant energy would be sufficient to completely melt surface materials in microseconds, though rugged topography could protect areas shadowed from the air-burst by mountains, perhaps explaining the patchy nature of the glass occurrences.  (Note: the aforementioned papers on the YD and Sodom ‘air-bursts’ do not mention large glass fragments, whereas some surface melting would be expected). Some of the Chilean glass contains carbonised remnants of vegetation. Radiocarbon dating of four samples show that the glass formed at some time between 16.3 to 12.1 ka. Yes, that does include the age of the start of the YD (12.9 ka) and human migrants had established themselves in northern Chile and coastal Peru after 14.2 ka. Yet the authors, perhaps wisely, do no more than mention the coincidence, as well as that with the disappearance of South American Pleistocene megafaunas – more severe than on any other continent. With a very distinctive product, probably spanning a far larger area of South America, and attractive to humans as an ornament or a resource for sharp tools, expect follow-up articles in the future.

See also: http://www.sci-news.com/space/atacama-desert-comet-10247.html, Science News, 8 November 2021; Vast patches of glassy rock in Chilean desert likely created by ancient exploding comet, Eureka Alert, 2 November 2021.

The Mid-Pleistocene Transition: when glacial cycles changed to 100 ka

Before about a million years ago the Earth’s overall climate repeatedly swung from warm to cool roughly every 41 thousand years. This cyclicity is best shown by the variation of oxygen isotopes in sea-floor sediments. That evidence stems from the tendency during evaporation at the ocean surface for isotopically light  oxygen (16O) in seawater to preferentially enter atmospheric water vapour relative to 18O.  During cool episodes more water vapour that falls as snow at high latitudes fails to melt, so that glaciers grow. Continental ice sheets therefore extract and store 16O so that the proportion of the heavier 18O increases in the oceans. This shift shows up in the calcium carbonate (CaCO­3) shells of surface-dwelling organisms whose shells are preserved in sea-floor sediment. When the climate warms, the ice sheets melt and return the excess of 16O back to ocean-surface water, again marked by changed oxygen isotope proportions in plankton shells. The first systematic study of sea-floor oxygen isotopes over time revolutionised ideas about ancient climates in much the same way as sea-floor magnetic stripes revealed the existence of plate tectonics. Both provided incontrovertible explanations for changes observed in the geological record. In the case of oxygen isotopes climatic cyclicity could be linked to changes in the Earth’s orbital and rotational behaviour: the Milankovich Effect.

Glacial-interglacial cycles during the Pleistocene

The 41 ka cycles reflect periodic changes in the angle of the Earth’s rotational axis (obliquity), which have the greatest effect on how much solar heating occurs at high latitudes. However, between about 1200 and 600 ka the fairly regular, moderately intense 41 ka climate cycles shifted to more extreme, complex and longer 100 ka cycles at the ‘Mid-Pleistocene Transition’ (MPT). They crudely match cyclical variations in the shape of Earth’s orbit (eccentricity), but that has by far the least influence over seasonal solar heating. Moreover, modelling of the combined astronomical climate influences through the transition show little, if any, sign of any significant change in external climatic forcing. Thirty years of pondering on this climatic enigma has forced climatologists to wonder if the MPT was due to some sort of change in the surface part of the Earth system itself.

There are means of addressing the general processes at the Earth’s surface and how they may have changed by using other aspects of sea-floor geochemistry (Yehudai, M. and 8 others 2021. Evidence for a Northern Hemispheric trigger of the 100,000-y glacial cyclicity. Proceedings of the National Academy of Sciences, v. 118, article e2020260118; DOI: 10.1073/pnas.2020260118). For instance the ratio between the abundance of the strontium isotope 87Sr to that of 86Sr in marine sediments tells us about the progress of continental weathering around a particular ocean basin. The 87Sr/ 86Sr ratio is higher in rocks making up the bulk of the crystalline continental crust than that in basalts of the oceanic crust. That ratio is currently uniform throughout all ocean water. During the Cenozoic Era the ratio steadily increased in sea-floor sediments, reflecting the continual weathering and erosion of the continents. In the warm Pliocene (5.3 to 2.8 Ma) 87Sr/ 86Sr remained more or less constant, but began increasing again at the start of the Pleistocene with the onset of glaciation in the Northern Hemisphere. At about 1450 ka it began to increase more rapidly suggesting increased weathering, and then settled back to its earlier Pleistocene rate after 1100 ka. Another geochemical contrast between the continental and oceanic crust lies in the degree to which the ratio of two isotopes of neodymium (143Nd/144Nd) in rocks deviates from that in the Earth’s mantle – modelled from meteorite geochemistry – a measure signified by ЄNd. Magmatic rocks and young continental rocks have positive ЄNd values, but going back in time continental crust has increasingly negative ЄNd.

Yehudai et al analysed cores from deep-sea sediments that had been drilled between 41°N and 43°S in the Atlantic Ocean floor. They targeted layers designated as glacial and interglacial from their oxygen isotope geochemistry at different levels in the cores to check how ЄNd varied with time. The broad variations within each core look much the same, although at increasingly negative values from south to north, except in one case. The data from the most northerly Atlantic core show far more negative values of ЄNd, in both glacial and interglacial layers at around 950 ka ago, than do cores further to the south. The authors interpret this anomaly as showing a sudden increase in the amount of very old continental rocks – with highly negative ЄNd – that had become exposed at and ground from the base of the great northern ice sheets of North America, Greenland and Scandinavia. At present, the shield areas where the great ice sheets occurred until about 11 ka are almost entirely crystalline Precambrian basement, including the most ancient rocks that are known. Although broadly speaking the shields now have low relief, they are extremely rugged terrains of knobbly basement outcrops and depressions filled with millions of lakes. In the earlier Cenozoic they were covered by younger sedimentary rocks and soils formed by deep weathering, with less-negative ЄNd values. The authors conclude that around 950 ka that younger cover had largely been removed by glacial every every 41 ka or so since about 2.6 Ma ago, when glaciation of the Northern Hemisphere began.

The surface on which the North American ice sheet moved – typical Canadian Shield.

So what follows from that ЄNd anomaly? Yehudai et al suggest that in earlier Pleistocene times each successive ice sheet rested on soft rock; i.e. their bases were well lubricated. As a result, glaciers quickly reached the coast to break up and melt as icebergs drifted south. Exposure of the deeper, very resistant crystalline basement resulted in much more rugged base, as can be seen in northern Canada and Scandinavia today. Friction at their bases suddenly increased, so that much more ice was able to build up on the great shields surrounding the Arctic Ocean than had previously been possible. Shortly after 950 ka the sea-floor cores also reveal that deep ocean circulation weakened significantly in the following 100 ka. The influence on climate of regular, 41 ka changes in the tilt of the Earth’s rotational axis could therefore not be sustained in the later Pleistocene. The ice sheets could neither melt nor slide into the sea sufficiently quickly; indeed, bigger and more durable ice sheets would reflect away more solar heating than was previously possible as glacial gave way to interglacial. The 41 ka astronomical ‘pacemaker’ still operated, but ineffectually. A new and much more complex climate cyclicity set in. Insofar as climate change became stabilised, an overall ~100 ka pulsation emerged. Whether or not this fortuitously had the same pace as the weak influence of Earth’s changing orbital eccentricity remains to be addressed. The climate system just might be too complicated and sensitive for us ever to tell: it may even have little relevance in a climatically uncertain future.

See also: Why did glacial cycles intensify a million years ago? Science Daily, 8 November 2021.

New ideas on how subduction works

Nowadays, plate tectonics is thought mainly to be driven by the sinking of old, relatively cold and dense oceanic lithosphere at subduction zones: slab-pull force dominates the current behaviour of the outermost Earth. At the eastern edge of Eurasia subduction beneath Japan has yet to consume Pacific Ocean lithosphere younger than 180 Ma (Middle Jurassic). The Pacific Plate extends eastwards from there for over 7000 km to its source at the East Pacific Rise. That spreading axis has disappeared quite recently beneath the North American Plate between Baha California and northern California. It has been subducted. Since, to a first approximation, sea-floor spreading is at the same pace either side of mid-ocean constructive plate margins, subduction at the western edge of the North America has consumed at least 7000 km of old ocean lithosphere. Slab-pull force there has been sustained for probably more than 250 Ma. As a result several former island arcs have been plastered onto the leading edge of the North American Plate to create the geological complexity of its western states. If at any time the weight of the subducting slab had caused it leading edge literally to snap and fall independently wouldn’t that have decreased slab-pull force or shut it off, and spreading at the East Pacific Rise, altogether? No, says the vast expanse of the West Pacific plate

That dichotomy once encouraged scientists of the plate-tectonic era to assume that a subducted slab remains as strong as rigid plates at the surface. They believed that subduction merely bends a plate so that it can slide into the mantle. The use of seismic waves (seismic tomography) to peer into the mantle has revealed a far more complex situation. Beneath North America traces of subducted slabs are highly deformed and must have lost their rigidity, yet they still maintain slab-pull force. Three geoscientists from the Swiss Federal Institute of Technology Zurich, Switzerland, and the University of Texas at Austin, USA (Gerya T. V., Becovici, D. & Becker, T.W. 2021. Dynamic slab segmentation due to brittle–ductile damage in the outer rise. Nature, v. 599, p 245-250; DOI: 10.1038/s41586-021-03937-x) used computer-generated models of how various forces and temperature conditions at small and large scales bear on the behaviour of slabs being subducted. Where a plate bends into a subduction zone its rigidity results in cracking and faulting of its no convex upper surface, while the base is compressed. Seismic anomalies in the descending slab reflect the formation of pulled-apart segments, similar to those in a bar of chocolate (for a possible example from an exhumed subduction zone see: A drop off the old block? May 2008). Thermo-mechanical modelling suggests that the slab becomes distinctly weakened through brittle damage and by reduction in grain size because of ductile deformation, yet each segment maintains a high viscosity relative to the surrounding mantle rocks. Under present conditions and those extrapolated back into the Proterozoic, where the slab is thinned between segments it remains sufficiently viscous to avoid segments detaching to sink independently of one another. Such delamination would reduce slab-pull force. Another process operates in the surrounding mantle. The occurrence of earthquakes in a subducted slab down to a depth of about 660 km – the level of a major discontinuity in the mantle where pressure induces a change in its mineralogy and density – confirms that a modern slab maintains some rigidity and deforms in a brittle fashion. But at this depth it cannot continue to descend steeply and travels horizontally along the discontinuity, pushed by the more shallow subduction. It can now become buckled as the mantle resists its lateral motion.

Left: the subduction zone beneath Japan defined by seismic tomography (yellow to red = lower seismic wave speeds – more ductile; yellow to blue = higher speeds – more rigid). Right: modelled evolution of viscosity in a similar subduction zone under modern conditions showing slab segmentation (blue to brown = increasing viscosity). (Credit: Gerya et al., Figs 4c & 1a-e)

Rather than trying to mimic the chaos beneath North America the authors compared their results with seismic tomography of the younger system of westward subduction beneath Japan. This allowed them to ‘calibrate’ their modelling against actual deep structure well-defined by seismic tomography. The tectonic jumble beneath North America probably resulted from a much longer history of eastwards subduction. The complexity there may be explained by successive foundering of deformed slabs into the deeper mantle looking a bit like a sheet of still viscous pie pastry dropped on its edge. This happened, perhaps, as island arcs that had formed in the eastern Pacific sporadically accreted to the continent as the intervening oceanic lithosphere was subducted.   

There is ample evidence that modern-style subduction was widespread back as far as the Palaeoproterozoic. But in the Archaean the evidence is fitful: some hints of subduction, but plenty of contrary evidence.  Gerya and co-workers suggest that higher heat production from radioactive decay mantle earlier in Earth’s history would have reduced plate strength and mantle resistance to slab penetration. Subduction may have occurred but was interrupted repeatedly by foundering/delamination of individual detached segments at much shallower depths. That implies weaker as well as intermittent slab pull, or even further back its complete absence, so that planetary recycling would then have required other mechanisms, such as ‘drip tectonics’.

See also: Crushed resistance: Tectonic plate sinking into a subduction zone and Fate of sinking tectonic plates is revealed, Science Daily, 11 November 2021

Pinpointing the source of Martian meteorites and a stab at magmatism on Mars

Most meteorites found on the Earth’s surface are fragments of small bodies left over from the accretion of the planets around 4.5 billion years ago, thanks largely to collisions among larger, asteroid-sized bodies. A minority have other origins: some as debris from otherwise icy comets and a few that have been flung off other rocky planets or large moons by crater-forming impacts. Meteorites suspected to have originated through impact are ‘rocky’ – i.e.  made of silicates – and have textures and mineral contents suggesting they formed late in planetary evolution. Most are igneous with basaltic or ultramafic composition: respectively lavas and cumulates formed in magma chambers. Some are breccias, hinting at a pyroclastic origin. The radiometric ages of such planetary fragments are generally far younger than the times when the solar system and planets formed.  Almost 300 have been classified as coming from Mars, only two of which are older than 1400 Ma. The most numerous group of Martian meteorites, known as shergottites, crystallised between 575 and 150 Ma ago to form crust of igneous origin. During the journey from their source to Earth meteorites are exposed to high-energy cosmic rays that generate a variety of new isotopes, from whose relative proportions their travel time can be estimated. The shergottites all seem to have been blasted from Mars a mere 1.1 Ma ago, suggesting that a single impact launched them. So, identifying their source crater on Mars would enable the shergottites to be treated in the same way as samples collected by geologists from a small locality on Earth. Their geochemistry should give important clues to processes within Mars over a time period that spans the late-Precambrian to early Cretaceous on Earth.

Kuiper crater on the Moon, with rays and secondary craters. (Credit: NASA/Johns Hopkins University, USA)

There are many craters on Mars, so homing-in on a single source for shergottite meteorites might seem a tall order. A strategy for doing that depends on recognising craters formed by impacts with sufficient energy to eject debris at the escape velocity from Martian gravity: about 5 km s-1 compared with 11 km s-1 for Earth. Calculations suggest that such impacts would produce craters larger than 3 km across. Large ejecta travelling at slower speeds from them would fall back to produce smaller craters arranged radially from the main crater, forming distinctive rays. Anthony Lagain and colleagues from Curtin University, Western Australia and other institutions in Australia, USA, France and Côte d’ Ivoire adapted a detection algorithm to locate craters less than 1 km across that formed in rays around larger craters (Lagain, A. and 10 others 2021. The Tharsis mantle source of depleted shergottites revealed by 90 million impact craters. Nature Communications, v. 12, article6352; DOI: 10.1038/s41467-021-26648-3). They used 100 m resolution images of thermal emission from the Martian surface that most clearly distinguish large craters that have ejecta deposits around them. Then they turned to images with 0.25 m resolution covering the visible spectrum that can spot very small craters. The authors’ analysis compiled around 90 million impact craters smaller than 300 metres across (a quarter the size of the celebrated Meteor Crater in Arizona).

Laser-altimetry data that show two large impact craters and their ejecta aprons on the Tharsis Plateau of Mars and two of its huge volcanoes: grey-brown-red-orange-yellow-green = high-to-low elevations. (Credit: NASA / JPL-Caltech / Arizona State University)

Dust storms on Mars gradually fill and obscure small craters and ejecta rays, so the younger the impact event, the more visible are rays and secondary small craters. Luckily, just two large craters on Mars have well-preserved rays that contain high densities of small secondary craters. Both of them lie on the Tharsis Plateau near the Martian Equator. This is a vast bulge on the planet’s surface – 5000 km across and rising to 7 km – characterised by three enormous shield volcanoes that rise to 18 km above the average elevation of Mars. The authors judge that one or the other crater is the source for shergottite meteorites, and that this meteorite class collectively samples the most recent igneous rocks that form the Tharsis Plateau. So vast is its mass, that the plateau has probably built-up over most of Mars’s history. One hypothesis is that the bulging has progressively developed over a huge thermal anomaly that has supported a mantle superplume for billions of years from which basaltic magma has steadily moved to the surface.

This model of a perpetual hot spot beneath Tharsis implies that the magmas that it has generated in the past have progressively depleted the underlying mantle in the incompatible trace elements that preferentially enter magma rather than remaining in solid minerals during partial melting. Having been able to suggest that the 575 to 150 Ma-old shergottites represent the upper crust of Tharsis that formed at that late stage in its history, Lagain et al. use those meteorites’ well-established trace-element geochemistry to test that hypothesis. They do indeed suggest their derivation by partial melting of mantle rocks that had in earlier times been strongly depleted in incompatible elements. One of the greatest mysteries about Mars’ evolution may have been resolved without the need for a crewed mission.

A new, ‘bureaucratised’ hominin – Homo bodoensis

Palaeoanthropologists are in a bit of a muddle about the early humans of the Middle Pleistocene (~780 to 130 ka), namely Homo heidelbergensis and H. rhodesiensis. The first was defined in 1907 based on a massive lower jaw or mandible (but no cranium) found near Heidelberg in Germany. Fourteen years later a massively browed cranium (but no mandible) turned up near Kabwe in what is now Zambia (then Northern Rhodesia). That specimen became, in true colonialist fashion, H. rhodesiensis. Since then scientists have unearthed more such highly ‘robust’, ‘archaic’ remains in Africa, Asia and especially Europe: including at least 28 individuals in the Sima de los Huesos (‘pit of bones’), part of the World Heritage Site in the Atapuerca mountains of northern Spain. Do these widespread fossils really represent just two species or do specimens just happen to fit within two broadly similar morphological types? These days, most scientists experience discomfort with a reference to the legacy of Cecil Rhodes, so several sacks full of bones were metaphorically lumped into H. heidelbergensis. So widely dispersed are their sources and their ages covering such a wide span of time that the specimens might be expected contain a diverse range of genetic signatures. Yet only a single specimen from northern Spain, dated around 400 ka, has yielded DNA. The Sierra de Atapuerca provided an even more archaic European dated between 1.2 to 0.8 Ma (Early Pleistocene), from which dental proteins have been extracted. Comparative proteomics have encouraged H. antecessor to be considered as a possible common ancestor for anatomically modern humans (AMH), Neanderthals and Denisovans … and H. heidelbergensis.

A new, simplified model for the evolution of the genus Homo over the last 2 million years (Credit: Roksandic et al Fig 1)

A group of palaeoanthropologists has proposed a way to clear such muddy waters (Roksandic, M. & Radović, P. et al. 2021. Resolving the “muddle in the middle”: The case for Homo bodoensis sp. nov.. Evolutionary Anthropology, v. 30, early-release article 21929; DOI: 10.1002/evan.21929). Their device is to abolish the two previous species and lump together many human remains from the Middle Pleistocene of Africa into a new species named after the Bodo site in the Awash Valley of Ethiopia. It was there that a human cranium bearing characteristics similar to all the African specimens was found in 1976. Originally it was allocated to H. heidelbergensis, but now the composite group of archaic Middle Pleistocene Africans is proposed to be assigned to H. bodoensis. This composite species is also reckoned by the authors to be the ancestor of all surviving, anatomically modern humans. European examples of H. heidelbergensis are to be slotted into an early population of Neanderthals. Since the Denisovans of Asia are only known by DNA from tiny skeletal fragments, the taxonomic rearrangement logically should assign Asian archaic humans to early members of that mysterious but well-defined group. But a spanner in the works is that the sole example of H. heidelbergensis DNA (mitochondrial) – from northern Spain – more closely resembles Denisovans than it that of Neanderthals (see: Mitochondrial DNA from 400 thousand year old humans; Earth-logs December 2013).

There is also a bit of a problem with H. antecessor. There aren’t many specimens, and they are all from Atapuerca. Yet they are a plausible candidate, according to the proteomic analyses, for the most recent common ancestor (MRCA) of all subsequent humans (whatever taxonomists care to call them). But they do not fit in the taxonomic model suggested by Roksandic et al., who reject them as MRCA, on grounds that they are European. They consign them to an anomalous ‘spur’ that petred out in Spain while the real action was in Africa. So what happens if a cranium that bears close similarity to both H antecessor and H. bodoensis pops out of African Early Pleistocene sediments (older than about 700 ka)? There is at least one candidate from ~1 Ma sediments in Eritrea (Abbate, E. and 16 others 1998. A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea. Nature, v. 393, p. 458-460; DOI: 10.1038/30954), which is said to display ‘a mixture of characters typical of H. erectus and H. sapiens’. And there are others of that antiquity from Ethiopia.

Since the time of Charles Darwin there have been taxonomists who were (and are) either habitual ‘lumpers’ or ‘splitters’. There are more with a propensity for splitting because a new species carries the name of its initiator into posterity! So I expect the paper by Roksandic et al. to raise a cloud of academic dust. Yet taxonomic lumping has its stand-out species in the field of human evolution – H. erectus. A great many ‘archaic-looking’ human remains from the period after ~1.9 Ma until as recently as 200 ka have been dubbed ‘Erects’, giving the group an unsurpassed survival span of over a million years. A few early examples from Africa have been ‘split’ away to give H. ergaster, on taxonomic grounds that some palaeoanthropologists do not fully accept. Yet there are signs of later diversity that ‘splitters’ have, so far, not dared to slice-off from the mainstream consensus. So common are these ‘Erect’ fossils in China, that it is almost state policy that it was they who gave rise to living Han Chinese people! The lumpers are likely to hold sway in the absence of ancient DNA sequencing, which may never be possible outside temperate climates or for ages greater than that of the Spanish H. antecessor. With the knowledge that several anatomically very distinct hominin groups occupied the Earth together at several times in the last 300 ka – think H. floresiensis and H. naledi – it seems likely that the proposed pan-African H. bodoensis may not reflect past reality and the hypothesis needs considerably more testing

Nappe tectonics at the end of the Archaean

The beginning of modern-style plate tectonics is still debated in the absence of definite evidence. Because Earth’s mantle generates heat through radioactive decay and still contains heat left over from planetary accretion and core formation it must always have maintained some kind of heat transfer through some kind of circulatory motion involving the mantle and lithosphere. That must always too have involved partial melting and chemical differentiation that created materials whose density was lower than that of the mantle; e.g. continental crust. Since continental materials date back to more than 4 billion years ago and some may have been generated earlier in the Hadean, only to be lrgely resorbed, a generalised circulation and chemical differentiation have been Earth’s main characteristics from the start. One view is that early circulation was a form of vertical tectonics without subduction via a sort of ‘dripping’ or delamination of particularly dense crustal materials back into the mantle. A sophisticated model of how the hotter early Earth worked in this way has been called ‘lid tectonics’, from which plate tectonics evolved as the Earth cooled and developed a thicker, more rigid lithosphere. Such an outer layer would be capable of self-generating the slab pull that largely drives lateral motions of lithospheric plates. That process occurs once a slab of oceanic lithosphere becomes cool and dense enough to be subducted (see: How does subduction start?; August 2018).

The most convincing evidence for early plate tectonics would therefore be tangible signs of both subduction and large horizontal movements of lithospheric plates: common enough in the Neoproterozoic and Phanerozoic records, but not glaringly obvious in the earlier Archaean Eon. These unequivocal hallmarks have now emerged from studies of Archaean rocks in the Precambrian basement that underpins northern China and North Korea. The North China Craton has two main Archaean components: an Eastern Block of gneisses dated between 3.8 and 3.0 Ga and a Western Block of younger (2.6 to 2.5 Ga) gneisses, metavolcanics and metasediments. They are separated by a zone of high deformation. A key area for understanding the nature of the deformed Central Orogenic Belt is the Zanhuan Complex near the city of Kingtai (Zhong, YL. et al. 2021. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nature  Communications, v. 12, article6172, DOI: 10.1038/s41467-021-26474-7).

Schematic cross sections through the Zanhuan Complex of northern China, showing early and final development of the Central Orogenic Belt in the North China Block . (Credit: Zhong, YL. et al.;Figs 10b and c)

This small, complex area reveals that the older Eastern Block is unconformably overlain by Neoarchaean sediments, above which has been thrust a stacked series of nappes similar in size and form to those of the much younger Alpine orogenic belt of southern Europe. Though highly complex, the rocks involved having been folded and stretched by ductile processes, they are still recognisable as having originally been at the surface. Metavolcanics in the nappes can be assigned from their geochemistry to a late-Archaean fore-arc, through comparison with that of modern igneous rocks formed at such a setting in the Western Pacific. Thrust over the nappe complex is a jumble or mélange of highly deformed metasediments containing blocks of metabasalts and occasional ultramafic igneous rocks that geochemically resemble oceanic crust formed at a mid-ocean ridge. Some of them contain high-pressure minerals formed at depth in the mantle, indicating that they had once been subducted. The whole complex is cut by undeformed dykes of granitic composition dated at 2.5 Ga, confirming that the older rocks and the structures within them are Archaean in age. Thrust over the melange and tectonically underlying nappe complex are less-deformed volcanic rocks and granitic intrusions that closely resemble what is generally found in modern island arcs.

Orogenic belts bear witness to enormous crustal shortening caused by horizontal compressive forces. Assuming the average rate of modern subduction (2 cm yr-1) the 178 Ma history of the Zanhuan Complex implies more than 3,500 km of lateral transport. 2.5 billion years ago, higher radioactive heat production in the mantle would have made tectonic overturning considerably faster  The unconformity at the base of the complex suggests that it was driven over the equivalent of a modern passive, continental margin. So the complex provides direct evidence of horizontal plate tectonics and associated subduction during the latter stages of the Archaean that ranks in scale with that of many Phanerozoic orogenic belts, such as that of the European Alps. The Zanhuan Complex is a result of arc accretion that played a major role in many later orogens. The North China craton itself is reminiscent of continent-continent collision, as required in the formation of supercontinents.

Multiple impacts set back oxygen build-up in the Archaean

Earth’s present atmosphere contains oxygen because of one form of photosynthesis that processes water and carbon dioxide to make plant carbohydrates, leaving oxygen at a waste product. The photochemical trick that underpins oxygenic photosynthesis seems only to have evolved once. It was incorporated in a simple, single-celled organism or prokaryote, which lacks a cell nucleus but contains the necessary catalyst chlorophyll. Such an organism gave rise to cyanobacteria or blue-green bacteria, which still make a major contribution to replenishing atmospheric oxygen. Chloroplasts that perform the same function in plant cells are so like cyanobacteria that they were almost certainly co-opted during the evolution of a section of nucleus-bearing eukaryotes that became the ancestors of plants. A range of evidence suggests that oxygenic photosynthesis appeared during the Archaean Eon, the most tangible being the presence of stromatolites, which cyanobacteria mats or biofilms form today. These knobbly structures in carbonate sediments extend as far back as 3.5 billion years ago (see: Signs of life in some of the oldest rocks; September 2016). Yet it took a billion years before the first inklings of biogenic oxygen production culminated in the Great Oxygenation Event or GOE (see: Massive event in the Precambrian carbon cycle; January, 2012) at around 2400 Ma. Then, for the first time, oxidised iron in ancient soils turned them red. If oxygen was being produced, albeit in small amounts, in shallow, sunlit Archaean seas, why didn’t it build up in the atmosphere of those times? Geochemical analyses of Archaean sediments do point to trace amounts, with a few ‘whiffs’ of more substantial amounts. But they fall well below those of Meso- and Neoproterozoic and Phanerozoic times. One hypothesis is that Archaean oceans contained dissolved, ferrous iron (Fe2+) – a powerful reducing agent – with which available oxygen reacted to form insoluble ferric iron (Fe3+) oxides and hydroxides that formed banded iron formations (BIFS). The Fe2+ in this hypothesis is attributed to hydrothermal activity in basaltic oceanic crust. There is, however, another possibility for suppression of atmospheric oxygen accumulation in the Archaean and early-Palaeoproterozoic.

Summary of the evolution of atmospheric oxygen and related geological features. The percentage scale is logarithmic with the modern level being100%. Credit Alex Glass, Duke University

Simone Marchi of the Southwest Research Institute of Boulder, CO, USA and colleagues from the US, Austria and Germany suggest that planetary bombardment offers a plausible explanation (Marchi, S. et al 2021. Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nature Geoscience, v. 14 advance publication; DOI: 10.1038/s41561-021-00835-9). Over the last 20 years evidence of extraterrestrial impacts has emerged, in the form of thin spherule-bearing layers in Archaean sedimentary strata, probably formed by impacts of objects around 10 km across. So far 35 such layers have been identified from several locations in South Africa and Western Australia. They span the last billion years of the Archaean and the earliest Palaeoproterozoic, although they are not evenly spaced in time. The spherules represent droplets of mainly crustal but some meteoritic rocks that were vaporised by impacts and then condensed as liquid. Meteorites in particular contain reduced elements and compounds, including iron, whose oxidation by would remove free oxygen.

The evidence from spherule beds is supplemented by the team’s new calculations of the likely flux of impactors during the Archaean. These stem from re-evaluation of the lunar cratering record that is used to estimate the number and size of impacts on Earth up to 2.5 Ga ago. This flux amounts to the ‘leftovers’ of the catastrophic period around 4.1 Ga when the giant planets Jupiter and Saturn ran amok before they settled into their present orbits. Their perturbation of gravitational fields in the solar system injected a long-lived supply of potential impactors into the inner solar system, which is recorded by craters on the post-4.1 Ga lunar maria. The calculations suggest that the known spherule layers underestimate the true number of such collisions on Earth. Modelling by Marchi et al., based on the meteorite flux and the oxidation of vaporised materials produced by impacts, plausibly accounts for the delay in atmospheric oxygen build-up.

It is worth bearing in mind, however, that large impacts and their geochemical aftermath are, in a geological sense, instantaneous events widely spaced in time. They may have chemically ‘sucked’ oxygen out of the Archaean and early-Palaeoproterozoic atmosphere. Yet photosynthesising bacteria would have been generating oxygen continuously between such sudden events. The same goes for the supply of reduced ferrous iron and its circulation in the oceans of those times, capable of scavenging available oxygen through simple chemical reactions. In fact we can still observe that in action around ocean-floor hydrothermal vents where a host of reduced elements and compounds are oxidised by dissolved oxygen. The difference is that oxygen is now produced more efficiently on land and in the upper oceans and a less vigorous mantle is adding less iron-rich basalt magma to the crust: the balance has changed. Another issue is that the Great Oxygenation Event terminated the oxygen-starved conditions of the Archaean and Palaeoproterozoic in about 200 million years, despite the vast production of BIFs before and after it happened. The Wikipedia entry for the GOE provides a number of hypotheses for how that termination came about. Interestingly, one idea looks to a shortage of dissolved nickel that is vital for methane generating bacteria: a nickel ‘famine’. A geochemical setback for methanogens would have been a boost for oxygenic photosynthesisers and especially their waste product oxygen: methane quickly reacts with oxygen in the atmosphere to produce CO2 and water. Anomalously high nickel is a ‘signature element’ for meteorite bombardment, though it can be released by hydrothermal alteration of basalt. Had meteoritic nickel been fertilising methane-generating bacteria in the oceans prior to the GOE?

See also: A new Earth bombardment model. Science Daily, 21 October 2021.