End-Triassic mass extinction: evidence for oxygen depletion on the ocean floor

For British geologists of my generation the Triassic didn’t raise our spirits to any great extent. There’s quite a lot of it on the British Geological Survey 10-miles-to-the-inch geological map (South Sheet) but it is mainly muds, sandstones or pebble beds, generally red and largely bereft of fossils. For the Triassic’s 50 Ma duration following the end-Permian extinction at 252 Ma Britain was pretty much a desert in the middle of the Pangaea supercontinent. Far beyond our travel grants’ reach, the Triassic is a riot, as in the Dolomites of Northern Italy. Apart from a day trip to look at the Bunter Pebble Beds in a quarry near Birmingham and several weeks testing the load-bearing strength of the Keuper mudstones in the West Midlands (not far off zero) in a soil-mechanics lab, we did glimpse the then evocatively named Tea Green Marl (all these stratigraphic names have vanished). Conveniently they outcrop by the River Severn estuary, below its once-famous suspension bridge and close-by the M5 motorway. Despite the Tea Green Marl containing a bone bed with marine reptiles, time didn’t permit us to fossick, and, anyway, there was a nearby pub … The formation was said to mark a marine transgression leading on to the ‘far more interesting Jurassic’ – the reason we were in the area. We were never given even a hint that the end of the Triassic was marked by one of the ‘Big Five’ mass extinctions: such whopping events were not part of the geoscientific canon in the 1960s.

Pangaea just before the start of Atlantic opening at the end of the Triassic, showing the estimated extend of the CAMP large igneous province. The pink triangles show the sites investigated by He and colleagues.

At 201.3 Ma ago around 34 % of marine genera disappeared, comparable with the effect of the K-Pg extinction that ended the Mesozoic Era. Extinction of Triassic terrestrial animals is less quantifiable. Early dinosaurs made it through to diversify hugely during the succeeding Jurassic and Cretaceous Periods. Probably because nothing famous ceased to be or made its first appearance, the Tr-J mass extinction hasn’t captured public attention in the same way as those with the K-Pg or the P-Tr acronyms.  But it did dramatically alter the course of biological evolution. The extinctions coincided with a major eruption of flood basalts known as the Central Atlantic Magmatic Province (CAMP), whose relics occur on either side of the eponymous ocean, which began to open definitively at about the same time. So, chances are, volcanic emissions are implicated in the extinction event, somehow (see: Is end-Triassic mass extinction linked to CAMP flood basalts? June 2013). Tianchen He  of Leeds University, UK and the China University of Geosciences and British and Italian colleagues have studied three Tr-J marine sections on either side of Pangaea: in Sicily, Northern Ireland and British Columbia (He, T. and 12 others 2020. An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Science Advances, v. 6, article eabb6704; DOI: 10.1126/sciadv.abb6704). Their objective was to test the hypothesis that CAMP resulted in an episode of oceanic anoxia that caused the many submarine organisms to become extinct. Since eukaryote life depends on oxygen, a deficit would put marine animals of the time under great stress. Such events in the later Mesozoic account for global occurrences of hydrocarbon-rich, black marine shales – petroleum source rocks – in which hypoxia thwarted complete decay of dead organisms over long periods. However there is scant evidence for such rocks having formed ~201 Ma ago. Such as there is dates to about 150 ka younger than the Tr-J boundary in an Italian shallow marine basin. The issue of evidence is compounded by the fact that there are no ocean-floor sediments as old as that, thanks to their complete subduction as Pangaea broke apart in later times and its continental fragments drifted to their present configuration.

But there is an indirect way of detecting deep-ocean anoxia, in the inevitable absence of any Triassic and early Jurassic oceanic crust. It emerges from what happens to the stable isotopes of sulfur when there are abundant bacteria that use the reduction of sulfate (SO42-) to sulfide (S2-) ions. Such microorganisms thrive in anoxic conditions and produce abundant hydrogen sulfide, which in turn leads to the precipitation of dissolved iron as minute grains of pyrite (FeS2). This biogenic process selectively excludes 34S from the precipitated pyrite. As a result, at times of widespread marine reducing conditions seawater as a whole becomes enriched in 34S relative to sulfur’s other isotopes. The enrichment is actually expressed in the unreacted sulfate ions, and they may be precipitated as calcium sulfate or gypsum (CaSO4) in marine sediments deposited anywhere: He et al. focussed on such fractionation. They discovered large ‘spikes’ in the relative enrichment of 34S at the Tr-J boundary in shallow-marine sedimentary sequences exposed at the three sites. Moreover, they were able to estimate that the conditions on the now vanished bed of the Triassic ocean that gave rise to the spikes lasted for about 50 thousand years. The lack of dissolved oxygen resulted in a five-fold increase in pyrite burial in the now subducted ocean-floor sediments of that time. The authors suggest that the oxygen depletion stemmed from extreme global warming, which, in turn, encouraged methane production by other ocean-floor bacteria and, in a roundabout way, other chemical reactions that consumed free dissolved oxygen. Quite a saga of a network of interactions in the whole Earth system that may hold a dreadful warning for the modern Earth and ourselves.

Can a supernova affect the Earth System?

The easy answer is yes, simply because chemical elements with a greater relative atomic mass than that of iron are thought to be created in supernovae when dying giant stars collapse under their own gravity and then explode. Interstellar dust and gas clouds accumulate their debris. If the clouds are sufficiently dense gravity forms clumps that may become new stars and the planets that surround them. Matter from every once-nearby supernova enters these clouds and thus contributes to the formation of a planet. This was partly proven when pre-solar grains were found in the Murchison meteorite, some of which are as old as 7.5 billion years (Ga) – 3 Ga older than the Solar System (see: Mineral grains far older than the Solar System; January 15, 2020). Murchison is a carbonaceous chondrite, a class of meteorite which likely contributed lots of carbon-based compounds to the early Earth, setting the stage for the emergence of life. It has been estimated that a near-Earth supernova (closer than 1000 light years) would have noticeable effects on the biosphere, mainly because of the effects on atmospheric composition of the associated high-energy gamma-ray burst. That would create sufficient nitrogen oxides to destroy the ozone layer that shields the surface from harmful radiation. There are reckoned to have been 20 nearby supernovae during the last 10 Ma or so from the presence of anomalously high levels of the isotope 60Fe in marine sediment layers on the Pacific floor. Yet there is no convincing evidence that they coincided with detectable extinctions in the fossil record. But supernovae have been suggested as a possible cause of more ancient mass extinctions, such as that at the end of the Ordovician Period (but see: The late-Ordovician mass extinction: volcanic connections; July 2017).

Diorama of an Early Devonian reef with tabulate and rugose corals and trilobites (Credit: Richard Bizley)

The Late Devonian is generally accepted to be one of the ‘Big Five’ mass extinction events. However, unlike the others, the event was a protracted decline in biodiversity, with several extinction peaks). In particular it marked the end of Palaeozoic reef-building corals. Some have put down the episodic faunal decline to the effects of species moving from one marine basin to another as global sea levels fluctuated: much like the effects of the ‘invasion’ of the coral-eating Crown of Thorns sea urchin that has helped devastate parts of the Great Barrier Reef during present-day global warming (see: Late Devonian: mass extinction or mass invasion? January 2012). Recently, attention has switched to evidence for ultra-violet damage to the morphology of spores found in the strata that display faunal extinction; i.e. to the possibility of the ozone layer having been lost or severely depleted. One suggestion has been sudden peaks in volcanic activity, hinted at by spikes in the abundance of mercury of marine sediments. Brian Fields of the University of Illinois, with colleagues from the USA, UK, Estonia and Switzerland, have closely examined the possibility and the testability of a supernova’s influence (Fields. B.D. et al. 2020.  Supernova triggers for end-Devonian extinctions. Proceedings of the National Academy of Sciences, v. 117, article 202013774; DOI: 10.1073/pnas.2013774117).

They propose the deployment of mass-spectrometric analysis for anomalous stable-isotope abundances in the sediments that contain faunal evidence for accelerated extinction, particularly those of 146Sm, 235U and the long-lived plutonium isotope 244Pu (80 Ma hal-life). They suggest that the separation of the extinction into several events, may be a clue to a supernova culprit. A gamma-ray burst would arrive at light speed, but dust – containing the detectable isotopes –  although likely to be travelling very quickly would arrive hundred to thousands of years later, depending on the distance to the supernova. Cosmic rays generated by the supernova, also a possible kill mechanism, given a severely depleted ozone layer, travel about half the speed of light. Three separate arrivals for the products of a single stellar explosion are indeed handy as an explanation for the Late Devonian extinctions. But someone needs to do the analyses. The long-lived  plutonium isotope is the best candidate: even detection of a few atoms in a sample would be sufficient proof. But that would require a means of ruling out contamination by anthropogenic plutonium, such as analysing the interior of fossils. But would even such an exotic discovery prove the sole influence of a galactic even?

Fossil fuel, mercury and the end-Palaeozoic catastrophe

Siberian flood-basalt flows in the Putorana Plateau, Taymyr Peninsula, Russia. (Credit: Paul Wignall)

The end of the Permian Period (~252 Ma ago) saw the loss of 90% of marine fossil species and 70% of those known from terrestrial sediments: the greatest known extinction in Earth’s history. In their naming of newly discovered life forms, palaeontologists can become quite lyrical. Extinctions, however, really stretch their imagination. They call the Permo-Triassic boundary event ‘The Great Dying’. Why not ‘Permageddon’? Sadly, that was snaffled in the 1980s by an astonishingly short-haired heavy-metal tribute band. Enough bathos … The close of the Palaeozoic left a great many ecological niches to be filled by adaptive radiation during the Triassic and later Mesozoic times. Coinciding with the largest known flood-basalt outpouring – the three million cubic kilometres of Siberian Traps – the P-Tr event seemed to be ‘done and dusted’ after that possible connection was discovered in the mid 1990s. Notwithstanding, the quest for a gigantic, causative impact crater continues (see: Palaeobiology Earth-logs, May, September and October 2004), albeit among a dwindling circle of enthusiasts. The Siberian Traps are suitably vast to snuff the fossil record, for their eruption must have belched all manner of climate-changing gases and dusts into the atmosphere; CO2 to encourage global warming; SO2 and dusts as cooling agents. There is also evidence of a role for geochemical toxicity (see: Nickel, life and the end-Permian extinction, June 2014). The extinctions accompanied not only climate change but also a catastrophic fall in atmospheric oxygen content (see: Homing in on the great end-Permian extinction, April 2003; When rain kick-started evolution, December 2019). Recovery of the biosphere during the early Triassic was exceedingly slow.

Research focussed on the P-Tr boundary eventually uncovered an element of pure chance. Shales in Canada that span the boundary show major, negative δ13C excursions in the carbon-isotope record that coincide with fly ash in the analysed layers. This material is similar in all respects to that emitted from coal-fired power stations (see: Coal and the end-Permian mass extinction, March 2011). The part of Siberia onto which the flood basalts were erupted is rich in Permian coal measures and oil shales that lay close to the surface 252 Ma ago. The coal ash and massive emissions of CO2 may have resulted from their burning by the flood basalt event. Now evidence has emerged that this did indeed happen (Elkins-Tanton, L.T. et al. 2020. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology, v. 48, early publication; DOI: 10.1130/G47365.1).

The US, Canadian and Russian team found large quantities of burnt coal and woody material, and bituminous blobs in 600 m thick volcanic ashes at the base of the Siberian traps themselves. They concluded that the magma chamber from which the flood basalts emerged had incorporated sizeable volumes of the coal measures, leading to their combustion and distillation. This would have released CO2 enriched in light 12C due to isotopic fractionation by biological means, i.e. its δ13C would have been sufficiently negative to affect the carbon locked up in the Canadian P-Tr boundary-layer shales that show the sharp isotopic anomalies. The magnitude of the anomalies suggest that between six to ten thousand billion tons of carbon released as CO2 or methane by interaction of the Siberian Traps with sediments through which their magma passed could have created the global δ13C anomalies. That is about one tenth of the organic carbon originally locked in the Permian coal measures beneath the flood basalts

Another paper whose publication coincided with that by Elkins-Tanton et al. suggests that environmental mercury appears to have followed the same geochemical course as did carbon at the end of the Palaeozoic Era (Dal Corso, J. and 9 others 2020. Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nature Communications, v. 11, paper 2962; DOI: 10.1038/s41467-020-16725-4). This group, based at Leeds and Oxford Universities, UK and the University of Geosciences in Wuhan, China, base their findings on biogeochemical modelling of the global carbon and mercury cycles at the end of the Permian. Their view is that the coincidence in marine sediments at the P-Tr boundary of a short-lived spike in mercury and an anomaly in its isotopic composition with the depletion in 13C, described earlier, shows an intimate link between mercury and the biological carbon cycle in the oceans at the time. They suggest that this synergy marks ecosystem collapse and derives ‘from a massive oxidation of terrestrial biomass’; i.e. burning of organic material on the land surface. Their modelling hints at huge wildfires in equatorial peatlands but also a role for the Siberian flood-basalt volcanism and the incorporation of coal measures into the Siberian Trap magma chamber.

Humans and mass extinction

It is often said that the biosphere is currently undergoing species losses that may rival those of the ‘Big Five’ mass extinction, with the rate of new extinctions being estimated at about 100 times the background rate during geological time. Scientifically, this is probably a dodgy assumption for palaeobiologists simply do not have the evidence to suggest what such a ‘normal’ rate might be. The fossil record is notoriously incomplete for a whole variety of reasons largely to do with both preservation and fossil collection strategies. For instance, as today, some genera may have been very common and widespread in past times, whereas others rare and restricted to small ecological niches. The record of life is prone to huge errors so that only huge, global shifts in diversity, such as mass extinctions, can be viewed with statistical rigour; and then only with caveats. For sure, the rapid demise of species today is cause for alarm and dismay, and more taxa – mainly of smaller and more restricted groups – probably have escaped identification, and will continue to do so. In the context of growing human impacts on ecosystems across the globe extinction is an increasingly emotive topic, as witness the clamour among some geoscientists for adding a new Anthropocene Epoch to the to the Stratigraphic Column. Does that require renaming the Holocene, beginning 11,700 years ago at the end of the last Ice Age, during which agriculture began? Should its start be assigned to some event during recorded history, such as the European invasion of the Americas after 1493, the beginning of the Industrial Revolution or the explosion of the first thermonuclear weapons in the 1940s and 50s? Or did humans begin significantly to affect the biosphere once their spread from Africa started after about 130 ka ago, i.e. in the late Pleistocene? That argument may well run and run: it is foremost a scientific issue, to which rules apply. A cogent example is that of the fate of megafaunas on the major continents except Antarctica as humans migrated far and wide.

The demise of the large flightless birds of Madagascar and New Zealand form a well known case as they almost certainly followed first colonisation by humans around 200 BC and 1300 CE respectively. The megafaunas of the much larger continents of Australia and the Americas have been deemed to have been more than decimated in the same way after about 65 ka and 15 ka respectively. There are no longer giant armadillos and ground sloths in South America, mammoths ceased to roam North America, and giant wombats, marsupial predators and kangaroos only remain as bones, to name but a few. It has been argued that their extinctions stemmed from the first human migrants literally eating their way through vast terrains. Yet the vast herds of Africa seem not to have been affected in the same way, until much more recently as population grew and modern projectile weapons became widely available. That has been suggested to have resulted from co-evolution of humans and megafauna over two million years, together with instinctive caution among large African beasts, whereas the ‘naivety’ of their counterparts in the Americas and Australia doomed them to extinction. Of course, it is likely that things were a great deal more complicated in every case, as argued in a review of Late Pleistocene megafaunal extinctions by Gilbert Price of the University of Queensland, and colleagues from Australia, the US and Denmark (Price, G.J. et al. 2018. Big data little help in megafauna mysteries. Nature, v. 558, p. 23-25;  doi:10.1038/d41586-018-05330-7).

The gist of Price and colleagues’ critique of meta-analyses of data – 32 since 1997 – concerning allegedly human-induced extinctions is that much of the pertinent data is either low quality or poorly understood. For starters, much of the dating is questionable, either using inaccurate and outdated methods or based on inference. For instance, fossils of some alleged victim, e.g.  Australian land crocodiles (Quinkana) and giant wombats (Ramsayia), have never been dated. Moreover, dates of the last known fossils are used when they may have remained extant until more recently: wooly Eurasian mammoths were long supposed not to have survived the last glacial maximum, yet recently mammoth bones from Wrangel island were found to be as young as the second millennium BCE. In 2010 spores of the fungus Sporormiella, in sediment cores, which grows only on digested plant matter in herbivore dung, was used as a proxy for the former presence or absence of large herbivore herds. Its decline in sediments after 13 ka in North America happened to coincide roughly with the start of the North American Clovis hunter culture, which was used to show that extinctions of large herbivores were linked to human predation. Yet such fungi also live on excrement of many animals both large and small, and its preservation is affected by changes in climate and water flow. To properly link declines and extinctions in human prey animals requires concrete evidence of predation, such as cut marks on identifiable bones within middens associated with human habitation, such as hearths.

When emotion, ambition and bandwagon tendencies become associated with science, objectivity sometimes gets compromised.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

The late-Ordovician mass extinction: volcanic connections

The dominant feature of Phanerozoic stratigraphy is surely the way that many of the formally named major time boundaries in the Stratigraphic Column coincide with sudden shifts in the abundance and diversity of fossil organisms. That is hardly surprising since all the globally recognised boundaries between Eras, Periods and lesser divisions in relative time were, and remain, based on palaeontology. Two boundaries between Eras – the Palaeozoic-Mesozoic (Permian-Triassic) at 252 Ma and Mesozoic-Cenozoic (Cretaceous-Palaeogene) at 66 Ma – and a boundary between Periods – Triassic-Jurassic at 201 Ma – coincide with enormous declines in biological diversity. They are defined by mass extinctions involving the loss of up to 95 % of all species living immediately before the events. Two other extinction events that match up to such awesome statistics do not define commensurately important stratigraphic boundaries. The Frasnian Stage of the late-Devonian closed at 372 Ma with a prolonged series of extinctions (~20 Ma) that eliminated  at least 70% of all species that were alive before it happened. The last 10 Ma of the Ordovician period witnessed two extinction events that snuffed out about the same number of species. The Cambrian Period is marked by 3 separate events that in percentage terms look even more extreme than those at the end of the Ordovician, but there are a great many less genera known from Cambrian times than formed fossils during the Ordovician.

Untitled-1
Faunal extinctions during the Phanerozoic in relation to the Stratigraphic Column.

Empirical coincidences between the precise timing of several mass extinctions with that of large igneous events – mainly flood basalts – suggest a repeated volcanic connection with deterioration of conditions for life. That is the case for four of the Famous Five, the end-Ordovician die-off having been ascribed to other causes; global cooling that resulted in south-polar glaciation of the Gondwana supercontinent and/or an extra-solar gamma-ray burst (predicated on the preferential extinction of Ordovician near-surface, planktonic fauna such as some trilobite families). Neither explanation is entirely satisfactory, but new evidence has emerged that may support a volcanic trigger (Jones, D.S. et al. 2017. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, v. 45, p. 631-634; doi:10.1130/G38940.1). David Jones and his US-Japan colleagues base their hypothesis on several very strong mercury concentrations in thin sequences in the western US and southern China of late Ordovician marine sediments that precede, but do not exactly coincide with, extinction pulses. They ascribe these to large igneous events that had global effects, on the basis of similar Hg anomalies associated with extinction-related LIPs. Yet no such volcanic provinces have been recorded from that time-range of the Ordovician, although rift-related volcanism of roughly that age has been reported from Korea. That does not rule out the possibility as LIPs, such as the Ontong Java Plateau, are known from parts of the modern ocean floor that formed in the Mesozoic and Cenozoic. Ordovician ocean floor was subducted long ago.

The earlier Hg pulses coincide with evidence for late Ordovician glaciations over what is now Africa and eastern South America. The authors suggest that massive volcanism may then have increased the Earth’s albedo by blasting sulfates into the stratosphere. A similar effect may have resulted from chemical weathering of widely exposed flood basalts which draws down atmospheric CO2. The later pulses coincide with the end of Gondwanan glaciation, which may signify massive emanation of volcanic CO2 into the atmosphere and global warming. Despite being somewhat speculative, in the absence of evidence, a common link between the Big Five plus several other major extinctions and LIP volcanism would quieten their popular association with major asteroid and/or comet impacts currently being reinvigorated by drilling results from the K-Pg Chicxulub crater offshore of Mexico’s Yucatan Peninsula.

K-T (K-Pg) boundary impact probed

One of the most eagerly followed ocean-floor drilling projects has just released some results. Its target is 46 km radially away from the centre of the geophysical anomaly associated with the Chixculub impact structure just to the north of Mexico’s Yucatan Peninsula. In the case of large lunar impact craters the centre is often surrounded by a ring of peaks. Modelling suggests such features are produced by the deep penetration of immense seismic shock waves. In the first minute these excavate and fling out debris to leave a cavity penetrating deep into the crust. Within three minutes the cavity walls collapse inwards creating a rebound superficially similar to the drop flung upwards after an object is dropped in liquid. This, in turn, collapses outwards to emplace smashed and partially melted deep crustal material on top of what were once surface materials, creating a crustal inversion beneath a mountainous ring of Himalayan dimensions that surrounds a by-now shallow crater. That is the story modelled from what is known about well-studied, big craters on the Moon and Mercury. Chixculub is different because the impact was into the sea and involved debris-charged tsunamis that finally plastered the actual impact scar with sediments. The drilling was funded for several reasons, some palaeontological others relating to the testing of theories of impact processes and their products. Chixculub is probably the only intact impact crater on Earth, and the first reports of findings are in the second category (Morgan, J.V. and 37 others 2016. The formation of peak rings in large impact craters. Science, v. 354, p. 878-882; doi: 10.1126/science.aah6561).

English: K/T extinction event theory. An artis...
Artist’s depiction of the Chicxulub impact 65 million years ago that many scientists say is the most direct cause of the dinosaurs’ disappearance (credit: Wikipedia)

The drill core, reaching down to about 1.3 km below the sea floor penetrates post-impact Cenozoic sediments into a 100 m thick zone of breccias containing fragments of impact melt rock, probably the infill of the central crater immediately following the first few minutes of impact. Beneath that are coarse grained granites representing the middle continental crust from original depths around 10 km. The granite is intensely fractured and riven by dykes and pods of impact melt, and contains intensely shocked grains that typify impacts that produce a transient pressure of ~60 GPa – around six hundred thousand times atmospheric pressure. From seismic reflection surveys this crustal material overlies as yet un-drilled Mesozoic sedimentary rocks. Its density is significantly less than that of unshocked granite – averaging 2.4 compared with 2.6 g cm3. So it is probably filled with microfractures and sufficiently permeable for water to have penetrated once the impact site had cooled. This poses the question, yet to be addressed in print, of whether or not this near-surface layer became colonised by microorganisms in the aftermath (Barton, P. 2016. Revealing the dynamics of a large impact. Science, v. 354, p. 836-837). That is, was the surrounding ocean sterilised at the time of the K-T (K-Pg) mass extinction?; an issue whose resolution is awaited with bated breath by the palaeobiology audience. OK; so theory about the physical process of cratering has been validated to some extent, but will later results be more interesting, outside the planetary sciences community?

Read more about impacts here and mass extinctions here .

A rational view of the start of human influences on Life and Geology

Regular readers will know that I have strong views on attempts to burden stratigraphy with a new Epoch: the Anthropocene. The central one is that the lead-in to a putsch has as much to do with the creation of a bandwagon, to whose wheels all future geologists will be shackled, as it does to any scientific need for such a novelty. Bound up as it is with the fear that Earth may be experiencing its sixth mass extinction, the mooted Anthropocene will likely become a mere boundary marked by future stratigraphers as a Global Boundary Stratotype Section and Point or GSSP between the existing Holocene Epoch and that sequence of sedimentary strata and their fossil record that will be laid down on top of it. Or not, if humanity becomes extinct should the economically induced, dangerous modifications of our homeworld of the last few decades or centuries not be halted. Either way, it defies the stratigraphic ‘rule book’.

No one can deny that humanity’s activities are now immensely disruptive to surface geological processes. Nor is it possible to rule out such disruptive change to the biosphere in the near-future that a latter-day equivalent of the K/Pg or end-Permian events is on the cards: such confidence does not spring from the interminable succession of grand words and global inaction reiterated in December 2015 by the UN Paris Agreement on economically-induced climate change. Still, it was a bit of a relief to find that palaeontological evidence, or rather statistics derived from the fossil record in North American sedimentary rocks since the Carboniferous, emphasises that there is no need for the adoption of Anthropocene as an acceptable geological adjective.

To ecologists, extinctions are not the be all and end all of disruption of the biosphere. Major shifts in life’s richness are also recorded by the way entire ecosystems become disrupted. A classic, if small-scale, example is that way in which the ecosystem of the US Yellowstone National Park changed since the eradication by 1926 of the few hundred grey wolves that formerly preyed mainly on elk. In the 20 years since wolf reintroduction to the Park in 1995 the hugely complex but fragile Yellowstone ecosystem has showed clear signs of recovery of its pre-extirpation structure and diversity.

A consortium of mainly US ecologists, led by Kathleen Lyons of the National Museum of Natural History at the Smithsonian Institution in Washington DC, has assessed linkages between species of fossil animal and plants since the Carboniferous (S.K. Lyons and 28 others, 2015. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature, published on-line 16 December 2015 doi:10.1038/nature16447). They found that of the 350 thousand pairs of species that occurred together at different times throughout the late Palaeozoic to the last Epoch of the Cenozoic, the Holocene, some pairs appeared or clustered together more often than might be expected from random chance. Such non-random association suggests to ecologists that the two members of such a pair somehow shared ecological resources persistently, hinting at relationships that helped stabilise their shared ecosystem. For most of post-300 Ma time an average of 64% of non-random pairs prevailed, but after 11.7 ka ago – the start of the Holocene – that dropped to 37%, suggesting a general destabilisation of many of the ecosystems being considered. This closely correlates with the first human colonisation of the Americas, the last of the habitable continents to which humans migrated. This matches the empirical evidence of early Holocene extinctions of large mammals in the Americas, which itself is analogous to the decimation of large fauna in Australasia during the late Pleistocene following human arrival from about 50 to 60 ka ago. Significant human-induced ecological impact seems to have accompanied their initial appearance everywhere. The ecological effects of animal domestication and agriculture in Eurasia and the Americas mark the Holocene particularly. In fact, in Europe the presence of Mesolithic hunter gatherers is generally inferred, in the face of very rare finds of artefacts and dwellings, from changes in pollen records from Holocene lake and wetland sediments, which show periods of tree clearance that can not be accounted for by climate change.

There is no need for Anthropocene, other than as a political device.

Verneshots (huge volcanic gas blasts) ten years on

One of the most daring hypotheses of modern geosciences: is that of the ‘Verneshot’ reported by Earth Pages in 2004.  Jason Phipps Morgan and colleagues explored the possible consequences of a build-up of volatiles in plume-related magmas at the base of thick continental lithosphere beneath cratons, prior to the eruption of continental flood basalts. They suggested that pressure would eventually result in an explosive release at a lithospheric weak point, followed by collapse above the plume head that would propagate upwards, at hypersonic speeds. Modelling the forces involved, the authors of the novel idea considered that they would be sufficient to fling huge rock masses into orbit.  Verneshots might neatly explain the circumstances around mass extinctions, such as their coincidence with continental flood basalt events; large impact structures, most likely at the antipode of the event; global debris layers containing shocked rock, melt spherules; unusual element suites and compounds (including fullerenes); and enough toxic gas to cause biological devastation.

Ten years on, Verneshots are back, again in the prestigious journal Earth and Planetary Science Letters, and this time among the co-authors are Morgan père et fils (W. Jason a founder of plate tectonics, and Jason P. who launched the idea). This time the yet-to-be –accepted hypothesis comes with evidence of an extremely unusual and fortuitous kind (Vannucchi, P. et al. 2015. Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event. Earth and Planetary Science Letters, v. 409, p. 168-174). The origin of the paper lies in an attempt to verify reports of shocked quartz in samples collected close to the centre of the 2000 km2 devastation that resulted from what is now accepted to have been a comet or asteroid air-burst explosion in June 1908 in the Tunguska region of Siberia. Apart from a disputed 300 m crater in the area, the Tunguska Event left no long-lived sign: it ‘merely’ knocked over millions of trees. However, its epicenter lay in a 10 km depression ringed by hills, that has been suggested to be a volcanic centre associated with the end-Permian Siberian Traps.

Trees knocked down and burned over hundreds of square km by the 1908Tunguska Event (credit: Leonid Alekseyevich Kulik deceased)
Trees knocked down and burned over hundreds of square km by the 1908 Tunguska Event (credit: Leonid Alekseyevich Kulik deceased)

The reported shocked quartz locality turned out to associated with an isolated occurrence of quartz-rich sand and rounded clasts of quartzite that contains sedimentary structures. The occurrence is surrounded by basalts of the Siberian Traps, yet is situated topographically above them. The quartzite is thought to be Permian terrestrial sandstone that commonly underlies much of the remaining extent of Siberian Traps.

Quartzite clasts do indeed contain shocked quartz, together with pseudotachylite glass veinlets, quartz and feldspar crystal growth on sedimentary grains and silica-rich glassy spherules. These features are not uniquely diagnostic of shock metamorphism, but are oddly absent from the surrounding Siberian Traps nearby, which suggests that whatever formed them predated the final eruptive stages of the end-Permian large igneous province. Indeed it would be unlikely that airburst of some extraterrestrial bolide in 1908 could produce the metamorphic features of the quartzites without setting ablaze the trees that it felled. A second possibility, that the Tunguska Depression is a Permo-Triassic impact crater and the quartzites being part of an associated central uplift runs into the unlikely coincidence of lying less than 5 km from the 1908 epicentre.

A third hypothesis is that the Tunguska Depression is a massive diatreme associated with a Verneshot. Another odd association lies 8 km to the south of the epicentre, a carbonatite that is one of many, along with smaller pipe-like structures all possibly linked to magmatic gas escape. The Tunguska Event, a mighty puzzle in its own right, may perhaps be eclipsed. Will silence return as it did after the original Verneshot hypothesis was published? Quite possibly, but another quirk about the Siberian Traps was reported by Earth Pages in mid-2014. In a contribution to a link between this massive end-Permian volcanic effusion and the Permian-Triassic mass extinction it was noted that in the Chinese sedimentary repository of evidence for the extinction there is an isolated spike in the abundance of nickel  that is almost certainly of volcanic origin, but only the one when repeated flood basalt events perhaps ought to have led to a series of nickel anomalies. One huge volcanic gas release as the Siberian Traps were building up?

Mass extinctions’ connections with volcanism: more support

Plot the times of peaks in the rates of extinction during the Mesozoic against those of flood basalt outpourings closest in time to the die-offs and a straight line can be plotted through the data. There is sufficiently low deviation between it and the points that any statistician would agree that the degree of fit is very good. Many geoscientists have used this empirical relationship to claim that all Mesozoic mass extinctions, including the three largest (end-Permian, end-Triassic and end-Cretaceous) were caused in some way by massive basaltic volcanism. The fact that the points are almost evenly spaced – roughly every 30 Ma, except for a few gaps – has suggested to some that there is some kind of rhythm connecting the two very different kinds of event.

Major extinctions and flood basalt events during the Mesozoic (credit: S Drury)
Major Mesozoic extinctions and flood basalt events (credit: S Drury)

Leaving aside that beguiling periodicity, the hypothesis of a flood-basalt – extinction link has a major weakness. The only likely intermediary is atmospheric, through its composition and/or climate; flood volcanism was probably not violent. Both probably settle down quickly in geological terms. Moreover, flood basalt volcanism is generally short-lived (a few Ma at most) and seems not to be continuous, unlike that at plate margins which is always going on at one or other place. The great basalt piles of Siberia, around the Central Atlantic margins and in Western India are made up of individual thick and extensive flows separated by fossil soils or boles. This suggests that magma blurted out only occasionally, and was separated by long periods of normality; say between 10 and 100 thousand years. Evidence for the duration of major accelerations, either from stratigraphy and palaeontology or from proxies such as peaks and troughs in the isotopic composition of carbon (e.g. EPN Ni life and mass extinction) is that they too occurred swiftly; in a matter of tens of thousand years. Most of the points on the flood-basalt – extinction plot are too imprecise in the time dimension to satisfy a definite relationship. Opinion has swung behind an instantaneous impact hypothesis for the K-P boundary event rather than one involving the Deccan Traps in India, simply because the best dating of the Deccan suggests extinction seems to have occurred when no flows were being erupted, while the thin impact-related layer in sediments the world over is exactly at the point dividing Cretaceous flora and fauna from those of the succeeding Palaeogene.

Yet no such link to an extraterrestrial factor is known to exist for any other major extinctions, so volcanism seems to be ‘the only game in town’ for the rest. Until basalt dating is universally more precise than it has been up to the present the case is ‘not proven’; but, in the manner of the Scottish criminal law, each is a ‘cold case’ which can be reopened. The previous article  hardens the evidence for a volcanic driver behind the greatest known extinction at the end of the Permian Period. And in short-order, another of the Big Five seems to have been resolved in the same way. A flood basalt province covering a large area of west and north-west Australia (known as the Kalkarindji large igneous province)has long been known to be of roughly Cambrian age but does it tie in with the earliest Phanerozoic mass extinction at the Lower to Middle Cambrian boundary? New age data suggests that it does at the level of a few hundred thousand years (Jourdan, F. et al. 2014. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early-Middle Cambrian (Stage 4-5) extinction. Geology, v. 42, p. 543-546). The Kalkarindji basalts have high sulfur contents and are also associated with widespread breccias that suggest that some of the volcanism was sufficiently explosive to have blasted sulfur-oxygen gases into the stratosphere; a known means of causing rapid and massive climatic cooling as well as increasing oceanic acidity. The magma also passed through late Precambrian sedimentary basins which contain abundant organic-rich shales that later sourced extensive petroleum fields. Their thermal metamorphism could have vented massive amounts of CO2 and methane to result in climatic warming. It may have been volcanically-driven climatic chaos that resulted in the demise of much of the earliest tangible marine fauna on Earth to create also a sudden fall in the oxygen content of the Cambrian ocean basins.

Nickel, life and the end-Permian extinction

The greatest mass extinction of the Phanerozoic closed the Palaeozoic Era at the end of the Permian, with the loss of perhaps as much as 90% of eukaryote diversity on land and at sea. It was also over very quickly by geological standards, taking a mere 20 thousand years from about 252.18 Ma ago. There is no plausible evidence for an extraterrestrial cause, unlike that for the mass extinction that closed the Mesozoic Era and the age of dinosaurs. Almost all researchers blame one of the largest-ever magmatic events that spilled out the Siberian Traps either through direct means, such as climate change related to CO2, sulfur oxides or atmospheric ash clouds produced by the flood volcanism or indirectly through combustion of coal in strata beneath the thick basalt pile. So far, no proposal has received universal acclaim. The latest proposal relies on two vital and apparently related geochemical observations in rocks around the age of the extinctions (Rothman, D.H. et al. 2014. Methanogenic burst in the end-Permian carbon cycle. Proceedings of the National Academy of the United States, v. 111, p. 5462-5467).

Siberian flood-basalt flows in Putorana, Taymyr Peninsula. (Credit: Paul Wignall; Nature http://www.nature.com/nature/journal/v477/n7364/fig_tab/477285a_F1.html)
Siberian flood-basalt flows in Putorana, Taymyr Peninsula. (Credit: Paul Wignall; Nature http://www.nature.com/nature/journal/v477/n7364/fig_tab/477285a_F1.html)

In the run-up to the extinction carbon isotopes in marine Permian sediments from Meishan, China suggest a runaway growth in the amount of inorganic carbon (in carbonate) in the oceans. The C-isotope record from Meishan shows episodes of sudden major change (over ~20 ka) in both the inorganic and organic carbon parts of the oceanic carbon cycle. The timing of both ‘excursions’ from the long-term trend immediately follows a ‘spike’ in the concentration of the element nickel in the Meishan sediments. The Ni almost certainly was contributed by the massive outflow of basalt lavas in Siberia. So, what is the connection?

Some modern members of the prokaryote Archaea that decompose organic matter to produce methane have a metabolism that depends on Ni, one genus being Methanosarcina that converts acetate to methane by a process known as acetoclastic methanogenesis. Methanosarcina acquired this highly efficient metabolic pathway probably though a sideways gene transfer from Bacteria of the class Clostridia; a process now acknowledged as playing a major role in the evolution of many aspects of prokaryote biology, including resistance to drugs among pathogens. Molecular-clock studies of the Methanosarcina genome are consistent with this Archaea appearing at about the time of the Late Permian. A burst of nickel ‘fertilisation’ of the oceans may have resulted in huge production of atmospheric methane. Being a greenhouse gas much more powerful than CO2, methane in such volumes would very rapidly have led to global warming. Before the Siberian Traps began to be erupted nickel would only have been sufficiently abundant to support this kind of methanogen around ocean-floor hydrothermal springs. Spread globally by eruption plumes, nickel throughout the oceans would have allowed Methanosarcina or its like to thrive everywhere with disastrous consequences. Other geochemical processes, such as the oxidation of methane in seawater, would have spread the influence of the biosphere-lithosphere ‘conspiracy’. Methane oxidation would have removed oxygen from the oceans to create anoxia that, in turn, would have encouraged other microorganisms that reduce sulfate ions to sulfide and thereby produce toxic hydrogen sulfide. That gas once in the atmosphere would have parlayed an oceanic ‘kill mechanism’’ into one fatal for land animals.

There is one aspect that puzzles me: the Siberian Traps probably involved many huge lava outpourings every 10 to 100 ka while the magma lasted, as did all other flood basalt events. Why then is the nickel from only such eruption preserved in the Meishan sediments, and if others are known from marine sediments is there evidence for other such methanogen ‘blooms’ in the oceans?