Finding Archaean atmospheric composition using micrometeorites

Modern micrometeorites (about 20 μm in diameter) from deep-sea sediments, with shiny magnetite-rich veneers (Credit: D. E. Brownlee)

The gases making up the Earth’s atmosphere and their relative proportions before 2.5 billion years (Ga) ago are known with very little certainty. Carbonate rocks are rare, indicating that the oceans were more acidic, which implies that they had dissolved more CO2 from the atmosphere, which, in turn implies that there was much more of that gas than in present air. There are few signs of widespread glaciogenic sediments of Archaean age, at a time when the Sun’s energy output is estimated to have been at 70 to 75% of its present level. Without an enhanced greenhouse effect oceans would have been frozen over; so that supports high CO2 concentrations too. The fact that water worn grains of minerals such as uraninite (UO2) and pyrite (FeS2), which are stable only in reducing conditions, occur in Archaean conglomerates is a good indicator that there were only vanishingly small amounts of oxygen in the air. That was not to change until marine photosynthesisers produced enough to overcome the general reducing conditions at the Earth’s surface, marked by the Great Oxidation Event at around 2.4 Ga (see: Massive event in the Precambrian carbon cycle; Earth-logs, January 2012. Search for more articles in sidebar at Earth-logs home page). It was then that ancient soils (palaeosols) became the now familiar red colour because of their content of ferric iron oxides and hydroxides The problem is that reliable numbers cannot be attached to these kinds of observation. A common means of estimating CO2 levels comes from the way in which the gas reacts with silicates as soils form at the land surface, estimated from carbon isotopes in soil carbonate nodules. Since the rise of land plants around 400 Ma ago the distribution of pores (stomata) in fossil leaves provides a more precise estimate: the more CO2 in air the less densely packed are leaf stomata. For the Precambrian we are stuck with estimates based on chemical reactions of minerals with the atmosphere. Until recently, one reaction that must always have been extremely common was overlooked.

When meteorite pass through the atmosphere at very high speed friction heats them to incandescence. Their surfaces not only melt but the minerals from which they are composed react very strongly with air. The reaction products should therefore provide chemical clues to the relative proportions of atmospheric gases. Both oxygen and carbon dioxide are reactive at such temperatures, although nitrogen is virtually inert, yet it tends to buffer oxidation reactions. The rest of the atmosphere comprises noble gases – mainly argon – and by definition they are completely unreactive. Pure-iron micrometeorites collected from 2.7 Ga old sediments in the Pilbara Province of Western Australia are veneered with magnetite (Fe3O4) and wüstite (FeO), thus preserving a record of their passage through the Neoarchaean atmosphere. If the oxidant had been oxygen, for these minerals to form from elemental iron suggests oxygen levels around those prevailing today: clearly defying the abundant evidence for its near-absence during the Archaean. Carbon dioxide is the only candidate. Two studies have produced similar results (Lehmer, O. R. et al. 2020. Atmospheric CO2 levels from 2.7 billion years ago inferred from micrometeorite oxidationScience Advances, v. 6, article aay4644;  DOI: 10.1126/sciadv.aay4644 and Payne, R.C. et al. 2020. Oxidized micrometeorites suggest either high pCO2 or low pN2 during the Neoarchean. Proceedings of the National Academy of Sciences, v. 117 1360 DOI:10.1073/pnas.1910698117). Both use complex modelling of the chemical effects of meteorite entry. Lehmer and colleagues estimated that the Neoarchaean atmosphere contained about 64% CO2, with a surface atmospheric pressure about half that at present. This would be sufficient for a surface temperature of about 30°C achieved by the greenhouse effect, taking into account lower solar heating. The team led by Payne concluded a lower concentration (25 to 50%) and a somewhat cooler planet at that time. Both results suggest ocean water considerably more acid than are today’s. The combined warmth and acidity would have had a fundamental bearing on both the origin, survival and evolution of early life.

See also: Carroll, M. 2020. Meteorites reveal high carbon dioxide levels on early Earth; Yirka, R. Computer model shows ancient Earth with an atmosphere 70 percent carbon dioxide. (both from Phys.org)

Closure for the K-Pg extinction event?

Anyone who has followed the saga concerning the mass extinction at the end of the Cretaceous Period (~66 Ma ago) , which famously wiped out all dinosaurs except for the birds, will know that its cause has been debated fiercely over four decades. On the one hand is the Chicxulub asteroid impact event, on the other the few million years when the Deccan flood basalts of western India belched out gases that would have induced major environmental change across the planet. Support has swung one way or the other, some authorities reckon the extinction was set in motion by volcanism and then ‘polished-off’ by the impact, and a very few have appealed to entirely different mechanism lumped under ‘multiple causes’. One factor behind the continuing disputes is that at the time of the Chicxulub impact the Deccan Traps were merrily pouring out Disentanglement hangs on issues such as what actual processes directly caused the mass killing. Could it have been starvation as dust or fumes shut down photosynthesis at the base of the food chain? What about toxic gases and acidification of ocean water, or being seared by an expanding impact fireball and re-entering incandescent ejecta? Since various lines of evidence show that the late-Cretaceous atmosphere had more oxygen that today’s the last two may even have set the continents’ vegetation ablaze: there is evidence for soots in the thin sediments that mark the K-Pg boundary. The other unresolved issue is timing: of volcanogenic outgassing; of the impact, and of the extinction itself. A new multi-author, paper may settle the whole issue (Hull, P.M and 35 others 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, v. 367, p. 266-272; DOI: 10.1126/science.aay5055).

K-Pg oxygen
Marine temperature record derived from δ18O and Mg/Ca ratios spanning 1.5 Ma that includes the K-Pg boundary: the bold brown line shows the general trend derived from the data points (Credit: Hull et al. 2020; Fig 1)

The multinational team approached the issue first by using oxygen isotopes and the proportion of magnesium relative to calcium (Mg/Ca ratio) in fossil marine shells (foraminifera and molluscs) in several ocean-floor sediment cores, through a short interval spanning the last 500 thousand years of the Cretaceous and the first  million years of the Palaeocene. The first measures are proxies for seawater temperature. The results show that close to the end of the Cretaceous temperature rose to about 2°C above the average for the youngest Cretaceous (the Maastrichtian Age; 72 to 66 Ma) and then declined. By the time of the mass extinction (66 Ma) sea temperature was back at the average and then rose slightly in the first 200 ka of Palaeocene to fall back to the average at 350 ka and then rose slowly again.

Changes in carbon isotopes (δ13C) of bulk carbonate samples from the sediment cores (points) and in deep-water foraminifera (shaded areas) across the K-Pg boundary. (Credit: Hull et al. 2020; Fig 2A)

The second approach was to look in detail at carbon isotopes (δ13C) – a measure of changes in the marine carbon cycle –  and oxygen isotopes (δ18O) in deep water foraminifera and bulk carbonate from the sediment cores, in comparison to the duration of Deccan volcanism (66.3 to 65.4 Ma). The δ13C measure from bulk carbonate stays roughly constant in the Maastrichtian, then falls sharply at 66 Ma.  The δ13C of the deep water forams rises to a peak at 66 Ma. The δ18O measure of temperature peaks and declines at the same times as it does for the mixed fossils. Also examined was the percentage of coarse sediment grains in the muds from the cores. That measure is low during the Maastrichtian and then rises sharply at the K-Pg boundary.

Since warming seems almost certainly to be a reflection of CO2 from the Deccan (50 % of total Deccan outgassing), the data suggest not only a break in emissions at the time of the mass extinction but also that by then the marine carbon system was drawing-down its level in air. The δ13C data clearly indicate that the ocean was able to absorb massive amounts of CO2 at the very time of the Chicxulub impact and the K-Pg boundary. Flood-basalt eruption may have contributed to the biotic aftermath of the extinction for as much as half a million years. The collapse in the marine fossil record seems most likely to have been due to the effects of the Chicxulub impact. A third study – of the marine fossil record in the cores – undertaken by, presumably, part of the research team found no sign of increased extinction rates in the latest Cretaceous, but considerable changes to the marine ecosystem after the impact. It therefore seems that the K-Pg boundary impact ‘had an outsized effect on the marine carbon cycle’. End of story? As with earlier ‘breaks through’; we shall see.

See also: Morris, A. 2020 Earth was stressed before dinosaur extinction (Northwestern University)

How marine animal life survived (just) Snowball Earth events

diamict3
A Cryogenian glacial diamictite containing boulders of many different provenances from the Garvellach Islands off the west coast of Scotland. (Credit: Steve Drury)

Glacial conditions during the latter part of the Neoproterozoic Era extended to tropical latitudes, probably as far as the Equator, thereby giving rise to the concept of Snowball Earth events. They left evidence in the form of sedimentary strata known as diamictites, whose large range of particle size from clay to boulders has a range of environmental explanations, the most widely assumed being glacial conditions. Many of those from the Cryogenian Period are littered with dropstones that puncture bedding, which suggest that they were deposited from floating ice similar to that forming present-day Antarctic ice shelves or extensions of onshore glaciers. Oceans on which vast shelves of glacial ice floated would have posed major threats to marine life by cutting off photosynthesis and reducing the oxygen content of seawater. That marine life was severely set back is signalled by a series of perturbations in the carbon-isotope composition of seawater. Its relative proportion of 13C to 12C (δ13C) fell sharply during the two main Snowball events and at other times between 850 to 550 Ma. The Cryogenian was a time of repeated major stress to Precambrian life, which may well have speeded up evolution, sediments of the succeeding Ediacaran Period famously containing the first large, abundant and diverse eukaryote fossils.

For eukaryotes to survive each prolonged cryogenic stress required that oxygen was indeed present in the oceans. But evidence for oxygenated marine habitats during Snowball Earth events has been elusive since these global phenomena were discovered. Geoscientists from Australia, Canada, China and the US have applied novel geochemical approaches to occasional iron-rich strata within Cryogenian diamictite sequences from Namibia, Australia and the south-western US in an attempt to resolve the paradox (Lechte, M.A. and 8 others 2019. Subglacial meltwater supported aerobic marine habitats during Snowball Earth. Proceedings of the National Academy of Sciences, 2019; 201909165 DOI: 10.1073/pnas.1909165116). Iron isotopes in iron-rich minerals, specifically the proportion of 56Fe relative to that of 54Fe (δ56Fe), help to assess the redox conditions when they formed. This is backed up by cerium geochemistry and the manganese to iron ratio in ironstones.

In the geological settings that the researchers chose to study there are sedimentological features that reveal where ice shelves were in direct contact with the sea bed, i.e. where  they were ‘grounded’. Grounding is signified by a much greater proportion of large fragments in diamictites, many of which are striated through being dragged over underlying rock. Far beyond the grounding line diamictites tend to be mainly fine grained with only a few dropstones. The redox indicators show clear changes from the grounding lines through nearby environments to those of deep water beneath the ice. Each of them shows evidence of greater oxidation of seawater at the grounding line and a falling off further into deep water. The explanation given by the authors is fresh meltwater flowing through sub-glacial channels at the base of the grounded ice fed by melting at the glacier surface, as occurs today during summer on the Greenland ice cap and close to the edge of Antarctica. Since cold water is able to dissolve gas efficiently the sub-glacial channels were also transporting atmospheric oxygen to enrich the near shore sub-glacial environment of the sea bed. In iron-rich water this may have sustained bacterial chemo-autotrophic life to set up a fringing food chain that, together with oxygen, sustained eukaryotic heterotrophs. In such a case, photosynthesis would have been impossible, yet unnecessary. Moreover, bacteria that use the oxidation of dissolved iron as an energy source would have caused Fe-3 oxides to precipitate, thereby forming the ironstones on which the study centred. Interestingly, the hypothesis resembles the recently discovered ecosystems beneath Antarctic ice shelves.

Small and probably unconnected ecosystems of this kind would have been conducive to accelerated evolution among isolated eukaryote communities. That is a prerequisite for the sudden appearance of the rich Ediacaran faunas that colonised sea floors globally once the Cryogenian ended. Perhaps these ironstone-bearing diamictite occurrences where the biological action seems to have taken place might, one day, reveal evidence of the precursors to the largely bag-like Ediacaran animals

Risks of sudden changes linked to climate

The Earth system comprises a host of dynamic, interwoven components or subsystems. They involve processes deep within Earth’s interior, at its surface and in the atmosphere. Such processes combine inorganic chemistry, biology and physics. To describe them properly would require a multi-volume book; indeed an entire library, but even that would be even more incomplete than our understanding of human history and all the other social sciences. Cut to its fundamentals, Earth system science deals with – or tries to – a planetary engine. In it, the available energy from inside and from the Sun is continually shifted around to drive the bewildering variety, multiplicity of scales and variable paces of every process that makes our planet the most interesting thing in the entire universe. It has done so, with a variety of hiccups and monumental transformations, for some four and half billion years and looks likely to continue on its roiling way for about five billion more – with or without humanity. Though we occupy a tiny fraction of its history we have introduced a totally new subsystem that in several ways outpaces the speed and the magnitude of some chemical, physical and organic processes. For example: shifting mass (see the previous item, Sedimentary deposits of the ‘Anthropocene’); removing and modifying vegetation cover; emitting vast amounts of various compounds as a result of economic activity – the full list is huge. In such a complex natural system it is hardly surprising that rapidly increasing human activities in the last few centuries of our history have hitherto unforeseen effects on all the other components. The most rapidly fluctuating of the natural subsystems is that of climate, and it has been extraordinarily sensitive for the whole of Earth history.

Cartoon metaphor for a ‘tipping point’ as water is added to a bucket pivoted on a horizontal axis. As water level rises to below the axis the bucket becomes increasingly stable. Once the level rises above this pivot instability sets in until the syetem suddenly collapses

Within any dynamic, multifaceted system-component each contributing process may change, and in doing so throw the others out of kilter: there are ‘tipping points’. Such phenomena can be crudely visualised as a pivoted bucket into which water drips and escapes. While the water level remains below the pivot, the system is stable. Once it rises above that axis instability sets in; an external push can, if strong enough, tip the bucket and drain it rapidly. The higher the level rises the less of a push is needed. If no powerful push upsets the system the bucket continues filling. Eventually a state is reached when even a tiny force is able to result in catastrophe. One much cited hypothesis invokes a tipping point in the global climate system that began to allow the minuscule effect on insolation from changes in the eccentricity of Earth’s orbit to impose its roughly 100 ka frequency on the ups and downs of continental ice volume during the last 800 ka. In a recent issue of Nature a group of climate scientists based in the UK, Sweden, Germany, Denmark, Australia and China published a Comment on several potential tipping points in the climate system (Lenton, T.M. et al. 2019. Climate tipping points — too risky to bet against. Nature, v. 575, p. 592-595; DO!: 10.1038/d41586-019-03595-0). They list what they consider to be the most vulnerable to catastrophic change: loss of ice from the Greenland and Antarctic ice sheets; melting of sea ice in the Arctic Ocean; loss of tropical and boreal forest; melting of permanently frozen ground at high northern latitudes; collapse of tropical coral reefs; ocean circulation in the North and South Atlantic.

The situation they describe makes dismal reading. The only certain aspect is the steadily mounting level of carbon dioxide in the atmosphere, which boosts the retention of solar heat by delaying the escape of long-wave, thermal radiation from the Earth’s surface to outer space through the greenhouse effect. An ‘emergency’ – and there can be little doubt that one of more are just around the corner – is the product of ‘risk’ and ‘urgency’. Risk is the probability of an event times the damage it may cause. Urgency is the product of reaction time following an alert divided by the time left to intervene before catastrophe strikes. Not a formula designed to make us confident of the ‘powers’ of science! As the commentary points out, whereas scientists are aware of and have some data on a whole series of tipping points, their understanding is insufficient to ‘put numbers on’ These vital parameters. And there may be other tipping points that they are yet to recognise.  Another complicating factor is that in a complex system catastrophe in one component can cascade through all the others: a tipping may set off a ‘domino effect’ on all the others. An example is the steady and rapid melting of boreal permafrost. Frozen ground contains methane in the solid form of gas hydrate, which will release this ‘super-greenhouse’ gas as melting progresses.   Science ‘knows of’ such potential feedback loops in a largely untried, theoretical sense, which is simply not enough.

A tipping point that has a direct bearing on those of us who live around the North Atlantic resides in the way that water circulates in that vast basin. ‘Everyone knows about’ the Gulf Stream that ships warm surface water from equatorial latitudes to beyond the North Cape of Norway. It keeps NW Europe, otherwise subject to extremely cold winter temperatures, in a more equable state. In fact this northward flow of surface water and heat exerts controls on aspects of climate of the whole basin, such as the tracking of tropical storms and hurricanes, and the distribution of available moisture and thus rain- and snowfall. But the Gulf Steam also transports extra salt into the Arctic Ocean in the form of warm, more briny surface water. Its relatively high temperature prevents it from sinking, by reducing its density. Once at high latitudes, cooling allows Gulf-Steam water to sink to the bottom of the ocean, there to flow slowly southwards. This thermohaline circulation effectively ‘drags’ the Gulf Stream into its well-known course. Should it stop then so would the warming influence and the control it exerts on storm tracks. It has stopped in the past; many times. The general global cooling during the 100 ka that preceded the last ice age witnessed a series of lesser climate events. Each began with a sudden global warming followed by slow but intense cooling, then another warming to terminate these stadials or Dansgaard-Oeschger cycles (see: Review of thermohaline circulation, Earth-logs February 2002). The warming into the Holocene interglacial since about 20 ka was interrupted by a millennium of glacial cold between 12.9 and 11.7 ka, known as the Younger Dryas (see: On the edge of chaos in the Younger Dryas, Earth-logs May 2009). A widely supported hypothesis is that both kinds of major hiccup reflected shuts-down of the Gulf Stream due to sudden influxes of fresh water into North Atlantic surface water that reduced its density and ability to sink. Masses of fresh water are now flowing into the Arctic Ocean from melting of the Greenland ice sheet and thinning of Arctic sea ice (also a source of fresh water). Should the Greenland ice sheet collapse then similar conditions for shut-down may arise – rapid regional cooling amidst global warming – and similar consequences in the Southern Hemisphere from the collapse of parts of the Antarctic ice sheets and ice shelves.  Lenton et al. note that North Atlantic thermohaline circulation has undergone a 15% slowdown since the mid-twentieth century…

See also: Carrington, D. 2019. Climate emergency: world ‘may have crossed tipping points’ (Guardian, 27 November 2019)

How permanent is the Greenland ice sheet?

80% of the world’s largest island is sheathed in glacial ice up to 3 km thick, amounting to 2.85 million km3. A tenth as large as the Antarctic ice sheet, if melted it could still add over 7 m to global sea level if it melted completely; compared with 58 m should Antarctica suffer the same fate. Antarctica accumulated glacial ice from about 34 to 24 million years ago during the Oligocene Epoch, deglaciated to became largely ice free until about 12 Ma and then assumed a permanent, albeit fluctuating, ice cap until today. In contrast, Greenland only became cold enough to support semi-permanent ice cover from about 2.4 Ma during the late-Pliocene to present episode of ice-age and interglacial cycles. The base of the GRIP ice core from central Greenland has been dated at 1 Ma old, but such is the speed of ice movement driven by far higher snow precipitation than in Antarctica that it is possible that basal ice is shifted seawards. The deepest layers recovered by drilling have lost their annual layering as a result of ice’s tendency to deform in a plastic fashion so do not preserve detailed glacial history before about 110 ka. In contrast, the more slowly accumulating and more sluggishly moving Antarctic ice records over 800 ka of climatic cyclicity in continuous cores and has yielded 2.7 Ma old blue ice exposed at the surface with another 2 km lying beneath it.

However, sediments at the base of two ice cores from Greenland have raised the possibility of periods when the island was free of ice. One such example is from an early core drilled to a depth of 1390 m beneath the 1960’s US military’s nuclear weapons base, Camp Century. It helped launch the use of continental ice as a repository of Earth recent climatic history at a far better resolution than do sediment cores from the ocean floors. It languished in cold storage after it was transferred from the US to the University of Copenhagen. Recently, samples from the bottom 3 m of sediment-rich ice were rediscovered in glass jars. A workshop centring on this seemingly unprepossessing material took place in the last week of October 2019 at the University of Vermont, USA (Voosen, P. 2019. Mud in stored ice core hints at thawed Greenland. Science, v. 366, p. 556-557; DOI: 10.1126/science.366.6465.556.

Sediment recovered from the base of the Camp Century core through the Greenland ice sheet (credit Jean-Louis Tison, Free University of Brussels)

To the participants’ astonishment, among the pebbles and sand were fragments of moss and woody material. It was not till, but a soil; Greenland had once lost its ice cover. Measurement of radioactive isotopes 26Al and 10Be, that form when cosmic rays pass through exposed sand grains, revealed that the once vegetated soil had formed at about 400 ka. Preliminary DNA analyses of preserved plant material indicates species that would have thrived at around 10°C. Samples have been shared widely for comprehensive analysis  to reconstruct the kind of surface environment that developed during the 400 ka interglacial. Also, Greenland may have been bare of ice during several such relatively warm intervals. So other cores to the base of the ice may be in the funding pipeline. But most interest centres on the implications of a period of rapid anthropogenic climatic warming that may take Arctic temperatures above those that melted the Greenland ice sheet 400 ka ago.

See also: UVM Today 2019. Secrets under the ice.

More on the Younger Dryas causal mechanism

The divergence of opinion on why a millennium-long return to glacial conditions began 12.8 thousand years recently deepened. The Younger Dryas stadial was an unprecedented event that halted and even reversed the human recolonisation of mid- to high northern latitudes after the end of the last ice age. Its inception was phenomenally rapid, taking a couple of decades to as little as perhaps a few years. The first plausible explanation was put forward by Wallace Broecker in 1989, who looked to explosive release of meltwater trapped in glacial lakes astride the Canadian-US border along the present St Lawrence River Valley, effectively flooding the source of NADW with a surface layer of low-density, low-salinity water. This, he suggested, would have shut down the thermohaline circulation in the North Atlantic. This is currently driven by cooling of salty surface water brought from the tropics to the Arctic Ocean by the Gulf Stream so that the resulting increase in density causes it to sink and thereby drive this part of the ocean water ‘conveyor’ system. A massive freshwater influx would prevent sinking and shut down the Gulf Stream, with the obvious effect of cooling high northern latitudes allowing ice caps to return to the surrounding continents. Yet Broecker’s St Lawrence flood mechanism was flawed by lack of evidence and the knowledge that a well-documented flood along that valley a thousand years before had raise se level by 20 m with no climatic effect. In 2005 clear evidence was found for a huge glacial outburst flood directly to the Arctic Ocean at around 12.8 ka that had followed Canada’s MacKenzie River; a route that would force low-density seawater to the very source of North Atlantic Deep Water through the Fram Straits, thereby stopping thermohaline circulation.

The year 2007 saw the emergence of a totally different account (see Whizz-bang view of Younger Dryas, July 2007; Impact cause for Younger Dryas draws flak, May 2008) centring on evidence for a 12.8 ka major impact in the form of excess iridium; spherules; fullerenes and evidence for huge wildfires in soils directly above the last known occurrences of the superbly crafted tools known as Clovis points – the hallmark of the earliest known humans in North America. Later (see Comet slew large mammals of the Americas?, March 2009) the same team reported minute diamonds from the same soils along with evidence for extinction of the Pleistocene megafauna; a view that was panned unmercifully.  Like the yet-to-be-found ‘end-Permian impact’ previously proposed by the same team, no crater of Younger Dryas age was then known. However, in 2018, ice-penetrating radar surveys revealed a convincing, 31 km wide subglacial impact structure beneath the Greenland ice cap, that is directly overlain by ice of Holocene (<11.7 ka) age. This reopened the case for an extraterrestrial origin for the Younger Dryas, followed by evidence from Chile for 12.8 ka wildfires presented by a team that includes academics who first made claims of an impact cause.

Untitled-2
Colour-coded subglacial topography from radar sounding over the Hiawatha Glacier of NW Greenland (Credit: Kjaer et al. 2018; Fig. 1D)

Last week, the impact-hungry team provided further evidence in lake-bed sediments from South Carolina, USA, which they have dated using an advanced approach to the radiocarbon method (Moore, C.R. and 16 others 2019. Sediment Cores from White Pond, South Carolina, contain a Platinum Anomaly, Pyrogenic Carbon Peak, and Coprophilous Spore Decline at 12.8 ka. Nature Scientific Reports, v. 9, online 15121; DOI: 10.1038/s41598-019-51552-8). This centres on a large spike in platinum and palladium, which they date to 12,785 ± 58 years before present; i.e. the start of the Younger Dryas. Preceding it is a peak in soot with a distinctive δ13C value attributed to wildfires (12, 838 ± 103 years b.p), and is followed by a peak in nitrogen isotopes (δ15N), indicating environmental changes, and a sharp decline in spores (12,752 ± 54 years b.p) attributed to fungi that consume herbivore dung – a sign of a decline in the local megafauna. In other words, a confirmation of previous findings at the Clovis site– but no diamonds. The variations in different parameters are based on 30 to 35 samples (each about 2 cm long) from about 0.8 m of sediment core, so it is curious that most of the data are presented as continuous curves. That issue may become the focus of criticism, as may the need for confirmation from other lake-bed cores from a wider number of localities. With such polarised views on a crucial episode in recent geological and biological history critical scrutiny is sure to come.

Chaos and the Palaeocene-Eocene thermal maximum

The transition from the Palaeocene to Eocene Epochs (56 Ma) was marked by an abrupt increase in global mean temperature of about 5 to 8°C within about 10 to 20 thousand years. That is comparable to a rate of warming similar to that currently induced by human activities. The evidence comes from the oxygen isotopes and magnesium/calcium ratios in the tests of both surface- and bottom dwelling foraminifera. The event is matched by a similarly profound excursion in the δ13C of carbon-rich strata of that age, whose extreme negative value marks the release of a huge mass of previously buried organic carbon to the atmosphere. The Epoch-boundary coincides with the beginning of rapid diversification among mammals and plants that had survived the end-Cretaceous mass extinction some 10 Ma beforehand. The most likely cause was the release of methane, a more potent greenhouse gas than CO2, from gas hydrate buried just beneath the surface of sea-floor sediments on continental shelves. An estimated mass of 1.5 trillion tonnes of released methane has been suggested. Methane rapidly oxidizes to CO2 in the atmosphere, which dissolves to make rainwater slightly acid so that the oceans also become more acid; a likely cause for the mass extinction of foraminifera species at the boundary.

Since the discovery of the Palaeocene-Eocene Thermal Maximum (PETM) in the late-1990s a range of possible causes have been suggested. Releasing methane suddenly from sea-floor gas hydrates needs some kind of trigger, such as a steady increase in the temperature of ocean-bottom water to above the critical level for gas-hydrate stability. The late-Palaeocene witnessed slow global warming by between 3 to 5°C over 4 to 5 Ma. There are several hypotheses for this precursor warming, such as a direct CO2 release from the mantle by volcanic activity for which there are several candidates in the geological record of the Palaeocene. Such surface warming would have had to be transferred to the sea floor on continental shelves to destabilise gas hydrates, which implicates a change in oceanic current patterns. An extraterrestrial cause has also been considered (see Impact linked to the Palaeocene-Eocene boundary event, Earth-logs October 2016). Sediment cores from the North Atlantic off the eastern seaboard of the US have revealed impact debris including glass spherules and shocked mineral grains at the same level as the PETM, together with iridium in terrestrial sediments onshore of the same age: there are no such global signatures). But apart from two small craters in Texas and Jordan (12 and 5 km across, respectively) of roughly the same age, no impact event of the necessary magnitude for truly global influence is known. However, there may have been an altogether different triggering mechanism.

Since the confirmation of the Milanković-Croll hypothesis to explain the cyclical shifts in climate during the Pleistocene Epoch in terms of changes in Earth’s orbital characteristics induced by varying gravitational forces in the solar system, the findings have been used as an alternative means of dating other stratigraphic events that show cyclicity. In essence, the varying forces at work are inherently chaotic in a formally mathematical sense. Although Milanković cycles sometimes pop-up when ancient, repetitive stratigraphic sequences are analysed, consistently using the method as a tool to calibrate the geological record to an astronomical timescale breaks down for sediments older than about 50 Ma. Calculations disagree markedly beyond that time. Richard Zeebe and Lucas Lourens of the Universities of Hawaii and Utrecht tried an opposite approach, using the known geological records from deep-sea cores to calibrate the astronomical predictions and, in turn, used the solution to take the astronomical time scale further back than 50 Ma (Zeebe, R.E. & Lourens, L.J. 2019. Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science, v. 365, p. 926-929; DOI: 10.1126/science.aax0612). They reached back about 8 Ma, so putting the PETM in focus. As well as refining its age (56.01 ± 0.05 Ma) they showed that the PETM coincided with a 405 ka maximum in Earth’s orbital eccentricity lasting around 170 ka: a possible orbital trigger for the spike in temperature and δ13C together, with evidence for a period of chaos in the Solar System about 50 Ma ago. But, what did that chaos actually do, other than mess up orbital dating? To me it seems to suggest something narsty happening to the behaviour of the Giant Planets that are the Lords of the astronomical dance…

See also: Grabowski, M. 2019. Deep-sea sediments reveal solar system chaos: an advance in dating geologic archives. SOEST News

Ediacaran glaciated surface in China

It is easy to think that firm evidence for past glaciations lies in sedimentary strata that contain an unusually wide range of grain size, a jumble of different rock types – including some from far-off outcrops – and a dominance of angular fragments: similar to the boulder clay or till on which modern glaciers sit. In fact such evidence, in the absence of other signs, could have formed by a variety of other means. To main a semblance of hesitancy, rocks of that kind are now generally referred to as diamictites in the absence of other evidence that ice masses were involved in their deposition. Among the best is the discovery that diamictites rest on a surface that has been scored by the passage of rock-armoured ice – a striated pavement and, best of all, that the diamictites contain fragments that bear flat surfaces that are also scratched. The Carboniferous to Permian glaciation of the southern continents and India that helped Alfred Wegener to reconstruct the Pangaea supercontinent was proved by the abundant presence of striated pavements. Indeed, it was the striations themselves that helped clinch his revolutionising concept. On the reconstruction they formed a clear radiating pattern away from what was later to be shown by palaeomagnetic data to be the South Pole of those times.

striae
29 Ma old striated pavement beneath the Dwyka Tillite in South Africa (credit: M.J Hambrey)

The multiple glacial epochs of the Precambrian that extended to the Equator during Snowball Earth conditions were identified from diamictites that are globally, roughly coeval, along with other evidence for frigid climates. Some of them contain dropstones that puncture the bedding as a result of having fallen through water, which reinforces a glacial origin. However, Archaean and Neoproterozoic striated pavements are almost vanishingly rare. Most of those that have been found are on a scale of only a few square metres. Diamictites have been reported from the latest Neoproterozoic Ediacaran Period, but are thin and not found in all sequences of that age. They are thought to indicate sudden climate changes linked to the hesitant rise of animal life in the run-up to the Cambrian Explosion. One occurrence, for which palaeomagnetic date suggest tropical latitude, is near Pingdingshan in central China above a local unconformity that is exposed on a series of small plateaus (Le Heron, D.P. and 9 others 2019. Bird’s-eye view of an Ediacaran subglacial landscape. Geology, v. 47, p. 705-709; DOI: 10.1130/G46285.1). To get a synoptic view the authors deployed a camera-carrying drone. The images show an irregular surface rather than one that is flat. It is littered with striations and other sub-glacial structures, such as faceting and fluting, together with other features that indicate plastic deformation of the underling sandstone. The structures suggest basal ice abrasion in the presence of subglacial melt water, beneath a southward flowing ice sheet

Geochemical background to the Ediacaran explosion

The first clear and abundant signs of multicelled organisms appear in the geological record during the 635 to 541 Ma Ediacaran Period of the Neoproterozoic, named from the Ediacara Hills of South Australia where they were first discovered in the late 19th century. But it wasn’t until 1956, when schoolchildren fossicking in Charnwood Forest north of Leicester in Britain found similar body impressions in rocks that were clearly Precambrian age that it was realised the organism predated the Cambrian Explosion of life. Subsequently they have turned-up on all continents that preserve rocks of that age (see: Larging the Ediacaran, March 2011). The oldest of them, in the form of small discs, date back to about 610 Ma, while suspected embryos of multicelled eukaryotes are as old as the very start of the Edicaran (see; Precambrian bonanza for palaeoembryologists, August 2006).

Artist’s impression of the Ediacaran Fauna (credit: Science)

The Ediacaran fauna appeared soon after the Marinoan Snowball Earth glaciogenic sediments that lies at the top of the preceding Cryogenian Period (650-635 Ma), which began with far longer Sturtian glaciation (715-680 Ma). A lesser climatic event – the 580 Ma old Gaskiers glaciation – just preceded the full blooming of the Ediacaran fauna. Geologists have to go back 400 million years to find an earlier glacial epoch at the outset of the Palaeoproterozoic. Each of those Snowball Earth events was broadly associated with increased availability of molecular oxygen in seawater and the atmosphere. Of course, eukaryote life depends on oxygen. So, is there a connection between prolonged, severe climatic events and leaps in the history of life? It does look that way, but begs the question of how Snowball Earth events were themselves triggered. Continue reading “Geochemical background to the Ediacaran explosion”

Soluble iron, black smokers and climate

 

Phytoplankton bloom in the Channel off SW England (Landsat image)

At present the central areas of the oceans are wet deserts; too depleted in nutrients to support the photosynthesising base of a significant food chain. The key factor that is missing is dissolved divalent iron that acts as a minor, but vital, nutrient for phytoplankton. Much of the soluble iron that does help stimulate plankton ‘blooms’ emanates from the land surface in wind blown dust (Palaeoclimatology September 2011) or dissolved in river water. A large potential source is from hydrothermal vents on the ocean floor, which emit seawater that has circulated through the basalts of the oceanic crust. Such fluids hydrate the iron-rich mafic minerals olivine and pyroxene, which makes iron available for transport. The fluids originate from water held in the muddy, organic-rich sediments that coat the ocean floor, and have lost any oxygen present in ocean-bottom water. Their chemistry is highly reducing and thereby retains soluble iron liberated by crustal alteration to emanate from hydrothermal vents. Because cold ocean-bottom waters are oxygenated by virtue of having sunk from the surface as part of thermohaline circulation, it does seem that ferrous iron should quickly be oxidised and precipitated as trivalent ferric compounds soon after hydrothermal fluids emerge. However, if some was able to rise to the surface it could fertilise shallow ocean water and participate in phytoplankton blooms, the sinking of dead organic matter then effectively burying carbon beneath the ocean floor; a ‘biological pump’ in the carbon cycle with a direct influence on climate. Until recently this hypothesis had little observational support. Continue reading “Soluble iron, black smokers and climate”