End-Ordovician mass extinction, faunal diversification, glaciation and true polar wander

Enormous events occurred between 460 and 435 Ma around the mid-point of the Palaeozoic Era and spanning the Ordovician-Silurian (O-S) boundary. At around 443 Ma the second-most severe mass extinction in Earth’s history occurred, which eliminated 50 to 60% of all marine genera and almost 85% of species: not much less than the Great Dying at the end of the Permian Period. The event was accompanied by one of the greatest biological diversifications known to palaeontology, which largely replaced the global biota initiated by the Cambrian Explosion. Centred on the Saharan region of northern Africa, Late Ordovician glacial deposits also occur in western South America and North America. At that time all the current southern continents and India were assembled in the Gondwana supercontinent, with continental masses that became North America, the Baltic region, Siberia and South China not far off: all the components that eventually collided to form Pangaea from the Late Silurian to the Carboniferous.

The mass extinction has troubled geologists for quite a while. There are few signs of major volcanism having been involved, although some geochemists have suggested that very high mercury concentrations in some Late Ordovician marine sediments bear witness to large, albeit invisible, igneous events. No large impact crater is known from those times, although there is a curious superabundance of extraterrestrial debris, including high helium-3, chromium and iridium concentrations, preserved in earlier Ordovician sedimentary rocks, around the Baltic Sea. Another suggestion, poorly supported by evidence, is destruction of the atmospheric ozone layer by a gamma-ray burst from some distant but stupendous supernova. A better supported idea is that the oceans around the time of the event lacked oxygen. Such anoxia can encourage solution of toxic metals and hydrogen sulfide gas. Unlike other mass extinctions, this one was long-drawn out with several pulses.

The glacial epoch also seems implicated somehow in the mass die-off, being the only one known to coincide with a mass extinction. It included spells of frigidity that exceeded those of the last Pleistocene glacial maximum, with the main ice cap having a volume of from 50 to 250 million cubic kilometres. The greatest of these, around 445 Ma, involved a 5°C fall in global sea-surface temperatures and a large negative spike in δ13C in carbon-rich sediments, both of which lasted for about a million years. The complex events around that time coincided with the highest ever extinction and speciation rates, the number of marine species being halved in a short space of time: a possible explanation for the δ13 C anomaly. Yet estimates of atmospheric CO2 concentration in the Late Ordovician suggests it was perhaps 8–16 times higher than today; Earth should have been a warm planet then. One probable contributor to extreme glacial conditions has been suggested to be that the South Pole at that time was well within Gondwana and thus isolated from the warming effect of the ocean. So, severe glaciation and a paradoxical combination of mass extinction with considerable biological diversification present quite an enigma.

A group of scientists based in Beijing, China set out to check the palaeogeographic position of South China between 460 and 435 Ma and evaluate those in  O-S sediments at locations on 6 present continents (Jing, X., Yang, Z., Mitchell, R.N. et al. 2022. Ordovician–Silurian true polar wander as a mechanism for severe glaciation and mass extinction. Nature Communications, v. 13, article 7941; DOI: 10.1038/s41467-022-35609-3). Their key tool is determining the position of the magnetic poles present at various times in the past from core samples drilled at different levels in these sedimentary sequences. The team aimed to test a hypothesis that in O-S times not only the entire lithosphere but the entire mantle moved relative to the Earth’s axis of rotation, the ‘slippage’ probably being at the Core-mantle boundary [thanks to Steve Rozario for pointing this out]. Such a ‘true polar wander’ spanning 20° over a mere  2 Ma has been detected during the Cretaceous, another case of a 90° shift over 15 Ma may have occurred at the time when Snowball Earth conditions first appeared in the Neoproterozoic around the time when the Rodinia supercontinent broke up and a similar event was proposed in 1994 for C-O times albeit based on sparse and roughly dated palaeomagnetic pole positions.

Xianqing Jing and colleagues report a wholesale 50° rotation of the lithosphere between 450 and 440 Ma that would have involved speeds of about 55 cm per year. It involved the Gondwana supercontinent and other continental masses still isolated from it moving synchronously in the same direction, as shown in the figure. From 460 to 450 Ma the geographic South Pole lay at the centre of the present Sahara. At 445 Ma its position had shifted to central Gondwana during the glacial period. By 440 Gondwana had moved further northwards so that the South Pole then lay at Gondwana’s southernmost extremity.

Palaeogeographic reconstructions charting true polar wander and the synchronised movement of all continental masses between 460 and 440 Ma. Note the changes in the trajectories of lines of latitude on the Mollweide projections. The grey band either side of the palaeo-Equator marks intense chemical weathering in the humid tropics. Credit Jing et al. Fig 5.

As well as a possible key to the brief but extreme glacial episode this astonishing journey by a vast area of lithosphere may help account for the mass extinction with rapid speciation and diversification associated with the O-S boundary. While the South Pole was traversing Gondwana as the supercontinent shifted the ‘satellite’ continental masses remained in or close to the humid tropics, exposed to silicate weathering and erosion. That is a means for extracting CO2 from the atmosphere and launching global cooling, eventually to result in glaciation over a huge tract of Gondwana around 445 Ma. Gondwana then moved rapidly into more clement climatic zones and was deglaciated a few million years later. The rapid movement of the most faunally diverse continental-shelf seas through different climate zones would have condemned earlier species to extinction simultaneous adaptation to changed conditions could have encouraged the appearance of new species and ecosystems. This does not require the catastrophic mechanisms largely established for the other mass extinction events. It seems that during the stupendous, en masse slippage of the Earth’s lithosphere plate tectonic processes still continued, yet it must have had a dynamic effect throughout the underlying mantle.

Yet the fascinating story does have a weak point. What if the position of the magnetic poles shifted during O-S times from their assumed rough coincidence with the geographic poles? In other words, did the self-exciting dynamo in the liquid outer core undergo a large and lengthy wobble? How the outer core’s circulation behaves depends on its depth to the solid core, yet the inner core seems only to have begun solidifying just before the onset of the Cambrian, about 100 Ma before the O-S events. It grew rapidly during the Palaeozoic, so the thickness of the outer core was continuously increasing. Fluid dynamic suggests that the form of its circulation may also have undergone changes, thereby affecting the shape and position of the geomagnetic field: perhaps even shifting its poles away from the geographic poles …

Environmental DNA reveals ecology in Northern Greenland from 2 Ma ago

The closest land to the North Pole is Peary Land in northern Greenland. Today, much of it is a polar desert and is bare of ice, so field geology is possible during the Arctic summer. It is one of the last parts of the northern hemisphere to have been mapped in detail. The bedrock ranges in age from the Mesoproterozoic to Upper Cretaceous, although the sequence is incomplete because of tectonic events and erosion during the Phanerozoic Eon. Its complex history has made Peary Land a draw for both structural geologists and stratigraphers. Apart from glacial tills the youngest rocks are estuarine sediments deposited in the early Pleistocene, between two glacial tills. They define one of the earliest known interglacials, roughly between 1.9 and 2.1 Ma, which lasted for an estimated 20 ka. Late Pliocene (3.4 Ma) sediments from around the Arctic Ocean have yielded rich fossil fauna and flora that suggest much warmer conditions – 10°C higher than those at present – before repeated glaciation began in the Northern Hemisphere. The sediments in Peary Land are fossiliferous, plant remains indicating a cover of coniferous trees, but animal fossils are restricted to small invertebrates: the tangible palaeontology offers slim pickings as regards assessing environmental conditions and the ecosystem.

One means of exploring faunal and floral diversity is through sampling and analysing DNA buried in sediments and soils rather than in fossils – plants shed pollen while animals spread their DNA via dung and urine. This approach has met with extraordinary success in revealing megafaunas that may have been decimated by humans newly arrived in the Americas. Even more remarkable was the ability of environmental DNA from cave sediments to reveal the former presence of individual humans who once lived in the caves and thus assess their numbers and relatedness. Such penetrating genetic ‘fingerprinting’ only became possible when new techniques to extract fragments of DNA from sediments and splice them to reconstruct genomes had been developed. But to apply them to material some two million years old would be a big ask; The oldest known DNA sequence had been recovered in 2021 from the molar of a 1.1 Ma old mammoth preserved in permafrost – a near-ideal source. A large multinational team under the supervision of Eske Willerslev (currently of Cambridge University, UK) took on the challenge, despite two million years of burial being likely to have degraded genetic material to minuscule fragments absorbed on the surface of minerals (Kjær, K.H. and 38 others 2022. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature, v 612, p. 283–291; DOI: 10.1038/s41586-022-05453-y). But it transpired that quartz grains have a good chance of ‘collecting’ bits of DNA and readily yielding them to the extraction media. The results are extraordinary.

Reconstruction of an American mastodon herd by American painter of large extinct fauna Charles R. Knight

The DNA extraction turned-up signs of 70 vascular plants, including poplar, spruce and yew now typically found at much lower latitudes, alongside sedges, shrubs and birch-tree species that still grow in Greenland. The climate was substantially warmer than it is now. The fauna included elephants – probably mastodons (Mammut) but not mammoths (Mammuthus) and caribou, as well as rabbits, geese and various species of rodents. There were even signs of ants and fleas. The overall assemblage of plants has no analogue in modern vegetation, perhaps because of the absence of anthropogenic influences, such as fires, the smaller extent of glaciations, their shorter duration and less established permafrost during the early Pleistocene. The last factor could have allowed a quicker and wider spread of coniferous-deciduous woodland, found today in NE Canada. In turn this spread of vegetation would have drawn in herds of large herbivores, later mastodons being known to have been wide-ranging forest dwellers. Willerslev suggests that the study has a potential bearing on how ecosystems may respond to climate change.

How did the earliest animals feed?

Among the strange early animals of the latest Precambrian, known as the Ediacaran fauna, is the slug-like Kimberella. Unlike most of its cohort, which are impressions in sediment or trace fossils,  Kimberella is a body fossil in which can be seen signs of a front and back, i.e. mouth and anus (See also: A lowly worm from the Ediacaran?). In that respect they are the same as us: bilaterians both. Indeed, Kimberella may be one of the oldest of our broad kind that we will ever be able to see. Rare examples have fans of grooves radiating from their ‘front’. It may have grated its food, a bit like a slug does, but drew it in to its mouth. Some enthusiasts have likened the little beasty to a JCB digger, able to rotate and rake stuff into its mouth. In that case, Kimberella would have moved ‘backwards’ while feeding. If it can be likened to any modern animals, it may be a simple mollusc.

A Kimberella fossil, about 10 centimetres long, and a speculative reconstruction showing its feeding apparatus.

Other Ediacaran animals show no such mouth-gut-anus symmetry. Some have tops and bases, but most show no symmetry at all, being flaccid bag-like creatures. Palaeontologists provisionally suggest that they are primitive sponges, ctenophores, placozoans and cnidarians. Such animals excrete through pores on their surfaces and draw food in either through a simple mouth or their skins. The early bilaterians probably ‘grazed’ on bacterial or algal mats, but until now that has been conjectural. Ilya Bobrovskiy of the Australian National University and colleagues from Russia and Australia have managed to extract and analyse biomarker chemicals contained in well-preserved specimens of three Ediacaran animals from strata on the White Sea coast of Russia (Bobrovskiy, I. et al. 2022. Guts, gut contents, and feeding strategies of Ediacaran animals. Current Biology, v. 32,   ; DOI: 10.1016/j.cub.2022.10.051). Biomarkers are molecules, such as fatty acids, phospholipids, triglycerides, hopanes and steranes, that definitively indicate metabolic processes of once living organisms, sometimes referred to as ‘molecular fossils’. Their varying proportions relative to one another are key to recognising the presence of different groups of organisms.

Specifically, hopane molecules are the best indicators of the former metabolism of bacteria whereas steranes (based on linked chains of carbon atoms bonded in rings) are typical products of degradation of sterols in eukaryotes. One sterane group involving 27 carbon atoms (C27 steranes) are typically formed when and animal dies and decays.   C28 and C29 steranes likely form when algae decay, as when they are digested in the gut of a herbivore. Specimens of one of the Ediacaran animals analysed by the team – Dickinsonia – contained far more C27 steranes than C28 and C29, a sign of biomarkers associated with its decay. It probably absorbed food, weirdly, through its skin. Kimberella and a worm-like animal – Calyptrina – had sterane proportions which suggested that they digested algae or bacteria in a gut, as befits bilaterians. Simple as they may appear, these are among the earliest ancestors of modern animals, including us: of course!

See also: Lu, D. 2022. The real paleo diet: researchers find traces of world’s oldest meal in 550m-year-old fossil. The Guardian, 22 November 2022.;  World’s oldest meal helps unravel mystery of our earliest animal ancestors. scimex, 23 November 2022

Early land plants and oceanic extinctions

In September 2022 Earth-logs highlighted how greening of the continents affected the composition of the continental crust. It now seems that was not the only profound change that the first land plants wrought on the Earth system. Beginning in the Silurian, the spread of vegetation swept across the continents during the Devonian Period. From a height of less than 30 cm among the earliest species by the Late Devonian the stature of plants went through a large increase with extensive forests of primitive tree-sized conifers, cycads, horsetails and sporiferous lycopods up to 10 m tall. Their rapid evolution and spread was not hampered by any herbivores. It was during the Devonian that tetrapod amphibians emerged from the seas, probably feeding on burgeoning terrestrial invertebrates. The Late Devonian was marked by five distinct episodes of extinction, two of which comprise the Devonian mass extinction: one of the ‘Big Five’. This affected both marine and terrestrial organisms. Neither flood volcanism nor extraterrestrial impact can be linked to the extinction episodes. Rather they marked a long drawn-out period of repeated environmental stress.

Phytoplankton bloom off the east coast of Scotland ‘fertilised’ by effluents carried by the Tay and Forth estuaries.

One possibility is that a side effect of the greening of the land was the release of massive amounts of nutrients to the seas that would have resulted in large-scale blooms of phytoplankton whose death and decay depleted oxygen levels in the water column. That is a process seen today where large amounts of commercial fertilisers end up in water bodies to result in their eutrophication. Matthew Smart and others from Indiana University-Purdue University, USA and the University of Southampton, UK, geochemically analysed Devonian lake deposits from Greenland and Scotland to test this hypothesis (Smart, M.S. et al. 2022. Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: Evidence from lacustrine phosphorus and geochemical records. Geological Society of America Bulletin, v. 134, early release article;  DOI: 10.1130/B36384.1).

Smart et al. show that in the Middle and Late Devonian the lacustrine strata show cycles in their abundance of phosphorus (P an important plant nutrient) that parallel evidence for wet and dry cycles in the lacustrine basins. The cycles show that the same phosphorus abundance patterns occurred at roughly the same times at five separate sites. This may suggest a climatic control forced by changes in Earth’s orbital behaviour, similar to the Milankovich Effect on the Pleistocene climate and at other times in Phanerozoic history. The wet and dry intervals show up in the changing ratio between strontium and copper abundances (Sr/Cu): high values signify wet conditions, low suggesting dry. The wet periods show high ratios of rubidium to strontium (Rb/Sr) that suggest enhanced weathering, while dry periods show the reverse – decreased weathering.

When conditions were dry and weathering low, P built up in the lake sediments, whereas during wet conditions P decreases; i.e. it was exported from the lakes, presumably to the oceans. The authors interpret the changes in relation to the fate of plants under the different conditions. Dry periods would result in widespread death of plants and their rotting, which would release their P content to the shallowing, more stagnant lakes. When conditions were wetter root growth would have increased weathering and more rainfall would flush P from the now deeper and more active lake basins. The ultimate repository of the sediments and freshwater, the oceans, would therefore be subject to boom and bust (wet and dry) as regards nutrition and phytoplankton blooms. Dead phytoplankton, in turn, would use up dissolved oxygen during their decay. That would lead to oceanic anoxia, which also occurred in pulses during the Devonian, that may have contributed to animal extinction.

See also: Linking mass extinctions to the expansion and radiation of land plants, EurekaAlert 10 November 2022; Mass Extinctions May Have Been Driven by the Evolution of Tree Roots, SciTechDaily, 14 November 2022.

Origin of animals at a time of chaotic oxygen levels

Every organism that you can easily see is a eukaryote, the vast majority of which depend on the availability of oxygen molecules. The range of genetic variation in a wide variety of eukaryotes suggests, using a molecular ‘clock’, that the first of them arose between 2000 to 1000 Ma ago. It possibly originated as a symbiotic assemblage of earlier prokaryote cells ‘bagged-up’ within a single cell wall: Lynn Margulis’s hypothesis of endosymbiosis. It had to have happened after the Great Oxygenation Event (GOE 2.4 to 2.2 Ga), before which free oxygen was present in the seas and atmosphere only at vanishingly small concentrations. Various single-celled fossil possibilities have been suggested to be the oldest members of the Eukarya but are not especially prepossessing, except for one bizarre assemblage in Gabon. The first inescapable sign that eukaryotes were around is the appearance of distinctive organic biomarkers in sediments about 720 Ma old. The Neoproterozoic is famous for its Snowball Earth episodes and the associated multiplicity of large though primitive animals during the Ediacaran Period (see: The rise of the eukaryotes; December 2017).

The records of carbon- and sulfur isotopes in Neo- and Mesoproterozoic sedimentary rocks are more or less flat lines after a mighty hiccup in the carbon and sulfur cycles that followed the GOE and the earliest recorded major glaciation of the Earth. The time between 2.0 and 1.0 Ga has been dubbed ‘the Boring Billion’. At about 900 Ma, both records run riot. Sulfur isotopes in sediments reveal the variations of sulfides and sulfates on the seafloor, which signify reducing and oxidising conditions respectively.  The δ13C record charts the burial of organic carbon and its release from marine sediments related to reducing and oxidising conditions in deep water. There were four major ‘excursions’ of δ13C during the Neoproterozoic, which became increasingly extreme. From constant anoxic, reducing conditions throughout the Boring Billion the Late Neoproterozoic ocean-floor experienced repeated cycles of low and high oxygenation reflected in sulfide and sulfate precipitation and by fluctuations in trace elements whose precipitation depends on redox conditions. By the end of the Cambrian, when marine animals were burgeoning, deep-water oxic-anoxic cycles had been smoothed out, though throughout the Phanerozoic eon anoxic events crop up from time to time.

Atmospheric levels of free oxygen relative to that today (scale is logarithmic) computed using combined carbon- and sulfur isotope records from marine sediments since 1500 Ma ago. The black line is the mean of 5,000 model runs, the grey area represents ±1 standard deviations. The pale blue area represents previous ‘guesstimates’. Vertical yellow bars are the three Snowball Earth events of the Late Neoproterozoic (Sturtian, Marinoan and Gaskiers). (Credit: Krause et al., Fig 1a)

The Late Neoproterozoic redox cycles suggest that oxygen levels in the oceans may have fluctuated too. But there are few reliable proxies for free oxygen. Until recently, individual proxies could only suggest broad, stepwise changes in the availability of oxygen: around 0.1% of modern abundance after the GOE until about 800 Ma; a steady rise to about 10% during the Late Neoproterozoic; a sharp rise to an average of roughly 80% at during the Silurian attributed to increased photosynthesis by land plants. But over the last few decades geochemists have devised a new approach based on variations on carbon and sulfur isotope data from which powerful software modelling can make plausible inferences about varying oxygen levels. Results from the latest version have just been published (Krause, A.J. et al. 2022. Extreme variability in atmospheric oxygen levels in the late Precambrian. Science Advances, v. 8, article 8191; DOI: 10.1126/sciadv.abm8191).

Alexander Krause of Leeds University, UK, and colleagues from University College London, the University of Exeter, UK and the Univerisité Claude Bernard, Lyon, France show that atmospheric oxygen oscillated between ~1 and 50 % of modern levels during the critical 740 to 540 Ma period for the origin and initial diversification of animals. Each major glaciation was associated with a rapid decline, whereas oxygen levels rebounded during the largely ice-free episodes. By the end of the Cambrian Period (485 Ma), by which time the majority of animal phyla had emerged, there appear to have been six such extreme cycles.

Entirely dependent on oxygen for their metabolism, the early animals faced periodic life-threatening stresses. In terms of oxygen availability the fluctuations are almost two orders of magnitude greater than those that animal life faced through most of the Phanerozoic. Able to thrive and diversify during the peaks, most animals of those times faced annihilation as O2 levels plummeted. These would have been periods when natural selection was at its most ruthless in the history of metazoan life on Earth. Its survival repeatedly faced termination, later mass extinctions being only partial threats. Each of those Phanerozoic events was followed by massive diversification and re-occupation of abandoned and new ecological niches. So too those Neoproterozoic organism that survived each massive environmental threat may have undergone adaptive radiation involving extreme changes in their form and function. The Ediacaran fauna was one that teemed on the sea floor, but with oxygen able to seep into the subsurface other faunas may have been evolving there exploiting dead organic matter. The only signs of that wholly new ecosystem are the burrows that first appear in the earliest Cambrian rocks. Evolution there would have ben rife but only expressed by those phyla that left it during the Cambrian Explosion.

There is a clear, empirical link between redox shifts and very large-scale glacial and deglaciation events. Seeking a cause for the dramatic cycles of climate, oxygen and life is not easy. The main drivers of the greenhouse effect COand methane had to have been involved, i.e. the global carbon cycle. But what triggered the instability after the ‘Boring Billion’? The modelled oxygen record first shows a sudden rise to above 10% of modern levels at about 900 Ma, with a short-lived tenfold decline at 800 Ma. Could the onset have had something to do with a hidden major development in the biosphere: extinction of prokaryote methane generators; explosion of reef-building and oxygen-generating stromatolites? How about a tectonic driver, such as the break-up of the Rodinia supercontinent? Then there are large extraterrestrial events … Maybe the details provided by Krause et al. will spur others to imaginative solutions. See also: How fluctuating oxygen levels may have accelerated animal evolution. Science Daily, 14 October 2022

Amber, palaeontologists and a military dictatorship

Most people are familiar with the term ‘blood diamonds’, meaning diamonds clandestinely exported from areas infested by the lethal activities of military and paramilitary forces. Indeed such conflicts are often fuelled by the large profits to be made from trading diamonds.  One such source was in Sierra Leone during the civil war of 1991-2002. Others include Liberia, Côte d’ Ivoire, Angola and the Democratic Republic of Congo. Like illicit money, gemstones can be ‘laundered’ and find their way into conventional trade. To some extent the blood diamond trade has been slowed down by a programme of certification of packaged uncut diamond ‘rough’ by bona fide producers, and banning the sale of uncertified rough. The Kimberley Programme has been criticised because certificates can be issued in corrupt ways, so that blood diamonds probably still make their way to the international diamond markets: certification may hold no fears for those who force people to ine at gun point. However, because diamonds often show geochemical signatures and minute inclusions of other minerals that are unique to individual pipe-like intrusions of kimberlite that carry deep-mantle material to the surface. So, it is technically possible – but costly – to check for suspect rough. Such controls do not apply to other gemstones. A major source of very-high value gems is Myanmar (formerly Burma), whose widely condemned military dictatorship may be engaged in their unethical trade, including smuggling to neighbouring Thailand and China to avoid scrutiny.

Foot of bird chick preserved in Cretaceous amber from Kachin, Myanmar. Credit: Pinterest, Xing Lida, China University of Geosciences)

Myanmar is well endowed with sedimentary deposits that contain amber, the solidified resin from a variety of now extinct trees. Oddly, completely clear amber has low intrinsic value: it is semi-precious, albeit attractive. But it often contains inclusions of vegetation fragments, insects, feathers and small vertebrates, of interest to palaeontologists. Myanmar amber is especially interesting as it is dated to the Middle Cretaceous (~130 Ma), older than that found around the Baltic Sea (Eocene ~44 Ma), which was the main source for European jewellery since the 12th century, and that from Canada (Upper Cretaceous ~80 Ma). Myanmar amber has been used decoratively and medicinally in China since the 3rd century CE, and in Europe since prehistoric times. It is attractive but quite common, so historically amber never commanded high prices but was widely used as a trade item. Since the publicity attending the supposed extraction of dinosaur DNA from the bodies of reptile parasites to resurrect dinosaurs in Steven Spielberg’s 1993 film Jurassic Park, public and scientific interest in amber has boomed. It is primarily the exquisite preservation of encased organisms that piques the interest of palaeontologists. Papers that rely on the Myanmar amber have grown in number over the last ten years, despite the country being infamous for military repression of tribal and religious groups in its rural areas.

One of the most conflict-riven areas is the northern state of Kachin where the most interesting amber to palaeontologists is collected by the Kachin people of the Hukawng Valley. Government forces have been in conflict with the Kachin Independence Army since the 1960s, most particularly for control of the amber industry. A recent paper has focussed on the ethical issue of publications based on fossil-bearing amber from the area (Dunne, E.M. et al. 2022. Ethics, law, and politics in palaeontological research: The case of Myanmar amber. Communications Biology, v. 5, article no. 1023; DOI: 10.1038/s42003-022-03847-2).

In 2010 the military began forcibly to take over mines in Kachin.  Between 2014 and 2021 the annual number of publication underwent a tenfold growth from between 10 to 15 to over 150, despite the fact that in 2015 the government in Yangon prohibited removal of fossils from the country. But the export laws exempt gemstones, so the growing demand for fossiliferous amber is clearly reflected in its supply to foreign scientists.  Rare specimens that include vertebrate remains command prices up to US$100,000. The Myanmar amber trade is now estimated at around US$ 1 billion per annum. The Myanmar military took over all the mines in 2017, and is clearly the main supplier to palaeontologists.

In the seven-year period, only 3 papers out of 872 included contributors from Myanmar, which also suggests an element of ‘parachute science’: unsurprisingly Myanmar-based scientists also find it difficult to visit the Kachin area. Before 2014 most of the 69 publications involved scientists in the US; since then, the top spot has been occupied by Chinese scientists who have amassed 417. It seems clear that there is a web of contacts linking together the source of Myanmar amber, its market and science. In 2020 the Society of Vertebrate Paleontology called for a moratorium on publishing data from Kachin sources. But since then there is little sign that palaeontologists have taken any notice.

See also: Ortega, R.P. 2022. Violent conflict in Myanmar linked to boom in fossil amber research, study claims. Science v. 378, p.10-11; DOI: 10.1126/science.adf0973 (This commentary includes opinion that seeks to mitigate the views of Emma Dunne and colleagues)

Ancient deep groundwater

Worldwide, billions of people depend on groundwater for their water needs from wells, deep boreholes and natural springs. Even surface water in rivers and lakes is directly connected to that moving sluggishly below the surface. In fact the surface water level marks where the water table coincides with the land surface. From season to season the water table rises and falls and so too do river and lake levels, depending on fluctuations in rainfall, snow melt, evaporation and extraction. Where it is present, vegetation plays a role in the hydrological cycle, through transpiration from roots through stems and leaves, from which it is exhaled by minute pores or stomata; effectively plants are able to pump water through their tissues to a height of up to a hundred metres.  Groundwater, like that at the surface, moves under gravity roughly parallel to the slope of the land surface from the place where precipitation infiltrates soil and rock. But the deeper it is the slower the flow and the less it is in direct contact with surface processes to be replenished by infiltration. Wells and boreholes rarely penetrate deeper than a few hundred metres, so that the vast bulk of groundwater is never used. Indeed most deep groundwater would not be drinkable or suitable for irrigation since over millennia or longer it dissolves material from the rock that contains it to become saline. In some deep sedimentary aquifers it may actually be composed of seawater trapped at the time of sedimentation.

Damp conditions in the Mponeng gold mine near Johannesburg, South Africa, the world’s deepest at 3.8 km below the surface with planned expansion to 4.3 km (Credit: AngloGold Ashanti)

The pore spaces in sandstones and fractures in limestones, the most common aquifers, are not the only conduits for groundwater. Crystalline igneous and metamorphic rocks are generally full of minute fractures resulting from their tectonic history. The deepest mines in crystalline basement, such as the gold mines of the Johannesburg area in South Africa, penetrate almost 4 km below the surface, yet are by no means dry and have to be pumped to stave off flooding. The water is a brine containing sodium and calcium chloride with high concentrations of dissolved, reduced gases such as hydrogen, methane and ethane (C2H6). Studies of the proportions of oxygen isotopes in the water reveal that the water in the fractures is very different from that in modern rainwater: this fluid is completely isolated from the modern hydrological cycle and is very old indeed. Just how old has now been determined (Warr, O. et al. 2022. 86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system. Nature Communications v. 13, Article number 3768; DOI: 10.1038/s41467-022-31412-2).

Brine extracted from a borehole in the floor of the Moab Khotsong gold/uranium mine also contains the noble gases helium, neon, argon, krypton and xenon. Noble gases are present in today’s atmosphere, so conceivably they may have originally entered the brine in rain water that seeped along fractures. However, when their isotopes are measured their proportions are very different from those in air. There are excesses of 4He, 21Ne, 22Ne, 40Ar, 86Kr and several isotopes of Xe. These isotopes are emitted during the radioactive decay of uranium, thorium and 40K, the main heat producing isotopes in the crust and mantle. Oliver Warr of the University of Toronto Canada and geochemists from Oxford University UK, Princeton University and the New Mexico Institute of Mining and Technology US, and the Sorbonne France show that originally atmospheric noble gases have been enriched in these radiogenic isotopes. Their present isotopic proportions therefore give clues to the time when air dissolved in groundwater was trapped in the host rock more than a billion years ago. A complicating factor is that the host rocks themselves are dated at about three times that age. They suggest that the fractures systems were initiated by the Vredfort asteroid impact at 2.0 Ga to form aquifers, but they became isolated from hydrological circulation around 1.2 Ga and now now contain the world’s oldest groundwater.

One of the implications of the study is that such trapped water may be present at depth in the crust of Mars, despite its current aridity. Another is that, because the fluid contains hydrogen, sulfate ions and hydrocarbon gases, it can potentially support organisms that use them to power their metabolism and reproduce. In 2008 microbes were found living in similar ancient groundwater 2.4 km below the surface in the Kidd Creek Mine, Canada, at a level of around 5 thousand cells per millilitre (50 times less than in surface water). They are powered by reduction of sulfate ions to sulfide. In 2008 another peculiar discovery in the deep biosphere emerged from the Mponeng gold mine near Johannesburg, South African (the world’s deepest) in the form of a living sulfate reducing bacterium Desulforudis audaxviator. DNA  analysis of the ancient water revealed that it was the sole inhabitant, a biological mystery confirmed by later deep-biosphere studies in Death Valley, USA, and Siberia.

See also: Researchers uncover life’s power generators in the Earth’s oldest groundwaters, EurekaAlert, 5 July 2022; Mantle link with biosphere, July 2009

Climate out of control after the Permian-Triassic mass extinction

The snuffing out of up to 90 percent of all terrestrial and marine species at the end of the Permian (252 Ma) was the outcome of lethal climatic warming. It probably stemmed from a stupendous episode of flood basalt volcanism and intrusions in what is now Siberia that burned vast amounts of peat or coal in the basin that the flows filled (see: Coal and the end-Permian mass extinction; March 2011). The carbon dioxide so released created planetary hyperthermia and toxic acid rain. For at least five million years Earth was an almost sterile world, a notable absence being dense vegetation on the land surface – the Early Triassic is devoid of coal, whereas there is plenty of Late Permian age. Much the same slow recovery of life is found in meagre collections of land and marine animal fossils of that age. Yet, other mass extinctions were followed by recovery and species diversification at a much faster pace.

One conceivable explanation could be the near absence of vegetation whose photosynthesis and burial would otherwise draw down CO2 and the same goes for its marine equivalent phytoplankton. But there is a powerful inorganic means of carbon sequestration: silicate weathering. The chemistry depends on carbon dioxide dissolved in water. For simple silicates it can be expressed as:

2CO2 + H2O + CaSiO3 → Ca2+ + 2HCO3 + SiO2.

The higher the ambient temperature, the faster such reactions proceed. Most silicates are more complex and many common ones, such as feldspars, include aluminium, so that another product of weathering is insoluble, fine-grained clay minerals. So various soluble metal ions (Ca, Mg, K, Na etc), dissolved bicarbonate ions, silica in various guises and clays eventually end up in the sea. Once there, it is possible for them to recombine, as for instance calcium and bicarbonate ions:

Ca2+ + 2HCO3→ CaCO3 + CO2 + H2O

Despite some CO2 gas being released, this reaction results in a net sequestration of carbon in calcium carbonate. Incidentally, the same kind of chemical reaction occurs in the soils produced by weathering. The carbonate may cement soils to form a hard crust of caliche or ‘calcrete’. Chemical weathering enhanced by a hot climate, it might seem, should reduce the greenhouse effect quickly: a feedback mechanism that normally stabilises climate. But that did not happen after the P-Tr extinction event, thereby stressing all remaining life forms. A group of scientists at the University of Waikato in New Zealand have developed a possible explanation for this potentially fatal hazard for life on Earth (Isson, T.T. et al. 2022. Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth. Nature Communications, v. 13, article 3509; DOI: 10.1038/s41467-022-31128-3). It focuses on the silica (SiO2) released by chemical weathering, which enters the ocean in the form of a colloid: Si(OH)4, a form of silicic acid known as ‘reactive silica’. Under ‘normal’ conditions, this is removed by organisms, such as diatoms and radiolaria, and is constantly recycled on a time scale of about 400 years, some contributing to deep-ocean oozes in the form of chert. But, like all other marine organisms, they too were victims of the P-Tr mass extinction.

Examples of marine radiolaria (top)

Reactive silica colloids in seawater also participate in inorganic chemical reactions, combining with dissolved metal ions to form complex hydrated aluminosilicates, i.e. more clay minerals. The reactions change the alkalinity of seawater. As a result dissolved HCO3ions transform to CO2 gas and water. Despite the complexity of the chemistry that interweaves the carbon and silicon cycles, there is a simple conclusion. If the abundance of silica-secreting marine organisms falls drastically while continental weathering continues to deliver silica, clay-mineral formation on the ocean floor results in release of CO2 that reverses the effect of enhanced weathering and thus maintains hyperthermal conditions. The other outcome is that less chert and flint granules form Terry Isson and colleagues examined the varying proportion of chert in cores through Lower Triassic marine sediments. A ‘chert gap’characterises the 4 to 6 Ma following the P-Tr boundary event. This can be explained in part by extinction of silica-secreting organisms and by inorganic reactions converting the reactive silica that enhanced weathering delivered to the oceans to clay minerals. This supports the idea that the inorganic part of the silica cycle maintained greenhouse conditions in the absence of organic ‘competition’ for reactive silica. Many other biogeochemical cycles link biological and chemical processes that combine to affect climate: involving phosphorus, nitrogen and iron, to name but three.

Evidence for oldest microbes from Arctic Canada

Among the oldest known rocks are metamorphosed pillow basalts on Nuvvuagittuk Island in Quebec on the east side of Hudson Bay, Canada. They contain red and orange, iron-rich sediments probably formed by hydrothermal activity associated with sea water passing through hot basalts. The ironstones are made of silica in the form of jasper (SiO2) and carbonates that are coloured by hematite (Fe2O3). This rock sequence is cut by silica-rich intrusive igneous rocks dated between 3750 and 3775 Ma: a minimum, Eoarchaean age for the sequence. This is roughly the same as the age of the famous Isua supracrustal rocks of West Greenland, but dating of the basalts using the samarium–neodymium method suggested that they formed in the Hadean about 4300 Ma ago, which would make them by far the oldest known rocks. However, that date clashes with a zircon U-Pb age of 3780 Ma for associated metasedimentary mica schists: a still ‘live’ controversy. The ironstones have been suggested to contain signs of life, in the form of minute tubes and filaments similar to those formed in modern hydrothermal vents by iron-oxidising bacteria (see: Earliest hydrothermal vent and evidence for life, March 2017). If that can be proven this would push back the age of the earliest known life by at least 300 Ma and maybe far more if the Hadean Sm-Nd age is confirmed

The Nuvvuagittuk material has recently been re-examined by its original discoverers using a variety of advanced microscope techniques (Papineau, D. et al 2022. Metabolically diverse primordial microbial communities in Earth’s oldest seafloor-hydrothermal jasper. Science Advances, v. 8, article 2296; DOI: 10.1126/sciadv.abm2296.). The most revealing of these involve two very-high resolution imaging systems: X-ray micro-tomography and electron microscopy armed with a focused ion beam that repeatedly shaves away 200 nm of rock from a sample. Both build up highly detailed 3-D images of any minute structures within a sample. The techniques revealed details of twisted filaments, tubes, knob-like and branching structures up to a centimetre long. While the first three could possibly have some inorganic origin, a ‘comb-like’ branch, likened to a moth’s antenna, has never been known to have formed by chemical reactions alone.

An image of hematite tubes from microfossils discovered in hydrothermal vent precipitates in the Nuvvuagittuk ironstones, reconstructed from X-ray and ion-beam micro-tomography (credit: Matthew Dodd, UCL)

All the structures are formed from hematite within a silica or carbonate (mainly calcite CaCO3 and ankerite Ca(Fe,Mg,Mn)(CO3)2) matrix. Some of the hematite (dominated by Fe3+) contains significant amounts of reduced Fe2+. The structures also contain tiny grains of graphite (C), phosphate (apatite Ca5(PO4)3(F,Cl,OH)) and various metal (Mn, Co, Cu, Zn, Ni, Cd) sulfides. The presence of graphite obviously suggests – but does not prove – a biological origin. However, all Phanerozoic jaspers formed from hydrothermal fluids contain undisputed organic material and appear little different from these ancient examples. Filaments, tubes and comb-like structures are displayed by various iron-oxidising bacteria found living in modern sea-floor hydrothermal vent systems. The sulfur isotopes in metal sulfides suggest their formation in an environment with vanishingly low oxygen content. Carbon isotopes in graphite are more enriched in light 12C relative to 13C than those in associated carbonates, a feature produced by living organic processes today. Patterns in plots of rare-earth elements (REE) from the Nuvvuagittuk jaspers are similar to those from modern examples and suggest high-temperature interactions between sea water and basaltic igneous rocks.

It is clear from the paper just how comprehensively the team of authors have considered and tested various biotic and abiotic options for the origin of the features found in the Nuvvuagittuk jasper samples. They conclude that they probably do represent an ancient microbial ecosystem associated with sea-floor hydrothermal vents; a now widely supported scenario for the origin of life on Earth. But what metabolic processes did the Nuvvuagittuk microbes use? Their intimate association with Fe3+ oxides that contain some reduced Fe2+ suggests that they exploited chemical ‘energy’ from oxidation reactions that acted on Fe2+ dissolved in hydrothermal fluids. This would have been impossible by inorganic means because of the very low oxygen content of seawater shown by the sulfur isotopes in associated sulfide minerals. Iron oxidation and precipitation of iron oxide by organic processes must have involved dissociation of water to yield the necessary oxygen and loss of electrons from available Fe2+, a process used by modern deep-water bacteria that depends on the presence of nitrates. That can power the metabolism of inorganic carbon dissolved in water as, for instance, bicarbonate ions and water to yield cell-building carbohydrates: a form of autotrophy. There may have been other metabolic routes, such as reducing dissolved sulfate ions to sulfur, as suggested by the association of metal sulfides. If the sea floor was shallow enough to be lit CO2 and water may have been converted to carbohydrates by a form of photosynthesis that does not release oxygen, analogous to modern purple bacteria.

There may have been considerable biodiversity in the Nuvvuagittuk ecosystem. So despite its vast age – it may have been active only 300 Ma after the Earth formed, if the oldest date is verified – it has to be remembered that a great many earlier evolutionary steps, both inorganic and organic, must have been accomplished to have allowed these organisms to exist. The materials do not signify the origin of life, but life that was chemically extremely sophisticated: far more so than anything attempted so far in laboratories to figure out the tricks performed by natural inorganic systems. DNA and RNA alone are quite a challenge!

See also: Video by authors of the paper (YouTube) Diverse life forms may have evolved earlier than previously thought. ScienceDaily, 13

Conditions that may have underpinned the ‘Cambrian Explosion’

Geologists of my generation leaned that the earliest signs of abundant and diverse animal life were displayed by an extraordinary assemblage of fossils in a mudstone exposure high on a ridge in the Rocky Mountains of British Columbia. The Burgess Shale lagerstätte, or ‘site of exceptional preservation’, was discovered by Charles Walcott in 1909. It contained exquisite remains, some showing signs of soft tissue, of a great range of animals, many having never before been seen. Though dated at 509 Ma (Middle Cambrian) it was regarded for much of the 20th century as the sign of a sudden burgeoning from which all subsequent life had evolved: the Cambrian Explosion. Walcott only scratched the surface of its riches, its true wonders only being excavated and analysed later by Harry Whittington and his protégé Simon Conway Morris of Cambridge University. Their results were summarised and promoted in one of the great books on palaeontology and evolutionary biology, Wonderful Life (1989) by Steven Jay Gould.

Harbingers of animal profusion first appear around 635 Ma in the Late Neoproterozoic as the Ediacaran Fauna, with the oldest precursors turning up around a billion years ago in the Torridonian Sandstone Formation of northern Scotland. The evolutionary links between them and the Cambrian Explosion are yet to be documented, as creatures of the Ediacaran remain elusive in the earliest Phanerozoic rocks. As regards the conditions that promoted the explosion of animal faunas, the Burgess Shale is a blank canvas, for its riches were not preserved in situ, but had drifted onto deep, stagnant ocean floor to be preserved in oxygen-poor muds that enabled their intricate preservation. The animals could not have lived and evolved without abundant oxygen: what that environment was is not recorded by Walcott’s famous stratigraphic site.

Artistic impression of the Chengjian Biota

China, it has emerged, offers a major clue from around 40 lagerstätten in Chengjian County, Yunnan. They are not only older (518 Ma) than the Burgess Shale but contain 27 percent more faunal diversity: 17 phylums and more than 250 species. Since the discovery of the Chengjian Biota in the first decade of the 21st century palaeontologists have, understandably, been preoccupied by describing its riches in hundreds of scientific papers. The nature of the ecosystem has remained as obscure as that of the Burgess Shale, largely due to the exposed host rocks (laminated siltstones and mudstones) having been weathered. They are superficially similar to the Burgess Shale. In March 2022, 10 scientists working at laboratories in China, Canada, Switzerland and the UK published the results of their painstaking sedimentological investigation of a core dilled through through the entire fossiliferous sequence (Salih, F. and 9 others 2022. The Chengjiang Biota inhabited a deltaic environment. Nature Communications, v. 13, article 1569; DOI: 10.1038/s41467-022-29246-z).

Reconstruction of the near-shore deltaic environment in which the Chengjian Biota lived and evolved. Several rock types and the sedimentary processes that probably formed them shown in ‘cores’ (Credit: Salih et al. Figure 3)

The unweathered core displays a variety of tiny sedimentary structures. These include cross laminations formed by migrating ripples, occasional fine sandstones that include signs of burrowing, graded bedding formed by minor turbidity currents, hummocks formed by back and forth water flow, ripples formed by flow in a single direction and small channels. Unlike the Burgess Shale, the fine-grained Chengjian sediments seem to have been deposited in environments that were far from stagnant and deep. They most closely resemble the offshore parts of the delta of a predominantly muddy river, subject to occasional floods and storms and characterised by large and rapid accumulation of mud and silt by dense sediment-loaded river water flowing down a gently sloping seabed into clearer seawater. That the sediment supply was full of nutrients and oxygen is reflected by small organisms living in burrows. The high-quality preservation of fossils in some layers can be attributed to sudden influxes of freshwater into their marine habitat during storms, so that they were killed in place. Such a near-shore environment, full of nutrients and oxygen but subjected to repeated geochemical and physical stresses, can explain adaptive radiation and evolution at a fast pace. Clearly, that is by no means a full explanation of the Cambrian Explosion, but offers sufficient insight for research to proceed fruitfully.

See also: Modern Animal Life Could Have Origins in a Shallow, Nutrient-Rich Delta, SciTechDaily, 23 March 2022.