Up-to-date review of animals before the Cambrian ‘Explosion’

Artist’s impression of the Ediacaran Fauna (credit: Science)

Since I began this blog in 2000 one of my most regular topics concerns the animals of the latest Precambrian: the Ediacaran fauna. If you want to browse through the items use ‘Ediacaran’ in the Search Earth-logs box. New material and ideas about those precursors to modern life forms (and some that are still puzzling) appear on a regular basis. Science journalist Traci Watson has just summarised the latest developments in an essay for Nature. It is a nicely written and copiously illustrated piece with lots of links. Rather than precis her article, I suggest that you go straight to it, if the topic piques your interest.

(Watson, T. 2020. The bizarre species that are rewriting animal evolution. Nature, v. 586, p. 662-665; DOI: 10.1038/d41586-020-02985-z)

Photosynthesis, arsenic and a window on the Archaean world

At the very base of the biological pyramid life is far simpler than that which we can see.  It takes the form of single cells that lack a nucleus and propagate only by cloning: the prokaryotes as opposed to eukaryote life such as ourselves. It is almost certain that the first viable life on Earth was prokaryotic, though which of its two fundamental divisions – Archaea or Bacteria – came first is still debated. At present, most prokaryotes metabolise other organisms’ waste or dead remains: they are heterotrophs (from the Greek for ‘other nutrition’). But there are others that are primary producers getting their nutrition by themselves, exploiting the inorganic world in a variety of ways: the autotrophs. Biogeochemical evidence from the earliest sedimentary rocks suggests that, in the Archaean prokaryotic autotrophs were dominant, mainly exploiting chemical reactions to gain energy necessary for building carbohydrates. Some reduced sulfate ions to those of sulphide, others combined hydrogen with carbon dioxide to generate methane as a by-product. Sunlight being an abundant energy resource in near-surface water, a whole range of prokaryotes exploit its potential through photosynthesis. Under reducing conditions some photosynthesisers convert sulfur to sulfuric acid , yet others combine photosynthesis with chemo-autotrophy. Dissolved material capable of donating electrons – i.e. reducing agents – are exploited in photosynthesis: hydrogen, ferrous iron (Fe2+), reduced sulfur, nitrite, or some organic molecules. Without one group, which uses photosynthesis to convert CO2 and water to carbohydrates and oxygen, eukaryotes would never have arisen, for they depend on free oxygen. A transformation 2400 Ma ago marked a point in Earth history when oxygen first entered the atmosphere and shallow water (see: Massive event in the Precambrian carbon cycle; January, 2012), known as Great Oxygenation Event (GOE). It has been shown that the most likely sources of that excess oxygen were extensive bacterial mats in shallow water made of photosynthesising blue-green bacteria that produced the distinctive carbonate structures known as stromatolites. These had formed in Archaean sedimentary basins for 1.9 billion years. It has been generally assumed that blue-green bacteria had formed them too, before the oxygen that they produced overcame the reducing conditions that had generally prevailed before the GOE. But that may not have been the case …

Microbial mats made by purple sulfur bacteria in highly toxic spring water flowing into a salt-lake in northern Chile. (credit: Visscher et al. 2020; Fig 1c)

Prokaryotes are a versatile group and new types keep turning up as researchers explore all kinds of strange and extreme environments, for instance: hot springs; groundwater from kilometres below the surface and highly toxic waters. A recent surprise arose from the study of anoxic springs laden with dissolved salts, sulfide ions and arsenic that feed parts of hypersaline lakes in northern Chile (Visscher, P.T. and 14 others 2020. Modern arsenotrophic microbial mats provide an analogue for life in the anoxic ArcheanCommunications Earth & Environment, v. 1, article 24; DOI: 10.1038/s43247-020-00025-2). This is a decidedly extreme environment for life, as we know it, made more challenging by its high altitude exposure to high UV radiation. The springs’ beds are covered with bright-purple microbial mats. Interestingly the water’s arsenic concentration varies from high in winter to low in summer, suggesting that some process removes it, along with sulfur, according to light levels: almost certainly the growth and dormancy of mat-forming bacteria. Arsenic is an electron donor capable of participating in photosynthesis that doesn’t produce oxygen. The microbial mats do produce no oxygen whatever – uniquely for the modern Earth – but they do form carbonate crusts that look like stromatolites. The mats contain purple sulfur bacteria (PSBs) that are anaerobic photosynthesisers, which use sulfur, hydrogen and Fe2+ as electron donors. The seasonal changes in arsenic concentration match similar shifts in sulfur, suggesting that arsenic is also being used by the PSBs. Indeed they can, as the aio gene, which encodes for such an eventuality, is present in the genome of PSBs.

Pieter Visscher and his multinational co-authors argue for prokaryotes similar to modern PSBs having played a role in creating the stromatolites found in Archaean sedimentary rocks. Oxygen-poor, the Archaean atmosphere would have contained no ozone so that high-energy UV would have bathed the Earth’s surface and its oceans to a considerable depth. Moreover, arsenic is today removed from most surface water by adsorption on iron hydroxides, a product of modern oxidising conditions (see: Arsenic hazard on a global scale; May 2020): it would have been more abundant before the GOE. So the Atacama springs may be an appropriate micro-analogue for Archaean conditions, a hypothesis that the authors address with reference to the geochemistry of sedimentary rocks in Western Australia deposited in a late-Archaean evaporating lake. Stromatolites in the Tumbiana Formation show, according to the authors, definite evidence for sulfur and arsenic cycling similar to that in that Atacama springs. They also suggest that photosynthesising blue-green bacteria (cyanobacteria) may not have viable under such Archaean conditions while microbes with similar metabolism to PSBs probably were. The eventual appearance and rise of oxygen once cyanobacteria did evolve, perhaps in the late-Archaean, left PSBs and most other anaerobic microbes, to which oxygen spells death, as a minority faction trapped in what are became ‘extreme’ environments when long before they ‘ruled the roost’. It raises the question, ‘What if cyanobacteria had not evolved?’. A trite answer would be, ‘I would not be writing this and nor would you be reading it!’. But it is a question that can be properly applied to the issue of alien life beyond Earth, perhaps on Mars. Currently, attempts are being made to detect oxygen in the atmospheres of exoplanets orbiting other stars, as a ‘sure sign’ that life evolved and thrived there too. That may be a fruitless venture, because life happily thrived during Earth’s Archaean Eon until its closing episodes without producing a whiff of oxygen.

See also: Living in an anoxic world: Microbes using arsenic are a link to early life. (Science Daily, 22 September 2020)

Can a supernova affect the Earth System?

The easy answer is yes, simply because chemical elements with a greater relative atomic mass than that of iron are thought to be created in supernovae when dying giant stars collapse under their own gravity and then explode. Interstellar dust and gas clouds accumulate their debris. If the clouds are sufficiently dense gravity forms clumps that may become new stars and the planets that surround them. Matter from every once-nearby supernova enters these clouds and thus contributes to the formation of a planet. This was partly proven when pre-solar grains were found in the Murchison meteorite, some of which are as old as 7.5 billion years (Ga) – 3 Ga older than the Solar System (see: Mineral grains far older than the Solar System; January 15, 2020). Murchison is a carbonaceous chondrite, a class of meteorite which likely contributed lots of carbon-based compounds to the early Earth, setting the stage for the emergence of life. It has been estimated that a near-Earth supernova (closer than 1000 light years) would have noticeable effects on the biosphere, mainly because of the effects on atmospheric composition of the associated high-energy gamma-ray burst. That would create sufficient nitrogen oxides to destroy the ozone layer that shields the surface from harmful radiation. There are reckoned to have been 20 nearby supernovae during the last 10 Ma or so from the presence of anomalously high levels of the isotope 60Fe in marine sediment layers on the Pacific floor. Yet there is no convincing evidence that they coincided with detectable extinctions in the fossil record. But supernovae have been suggested as a possible cause of more ancient mass extinctions, such as that at the end of the Ordovician Period (but see: The late-Ordovician mass extinction: volcanic connections; July 2017).

Diorama of an Early Devonian reef with tabulate and rugose corals and trilobites (Credit: Richard Bizley)

The Late Devonian is generally accepted to be one of the ‘Big Five’ mass extinction events. However, unlike the others, the event was a protracted decline in biodiversity, with several extinction peaks). In particular it marked the end of Palaeozoic reef-building corals. Some have put down the episodic faunal decline to the effects of species moving from one marine basin to another as global sea levels fluctuated: much like the effects of the ‘invasion’ of the coral-eating Crown of Thorns sea urchin that has helped devastate parts of the Great Barrier Reef during present-day global warming (see: Late Devonian: mass extinction or mass invasion? January 2012). Recently, attention has switched to evidence for ultra-violet damage to the morphology of spores found in the strata that display faunal extinction; i.e. to the possibility of the ozone layer having been lost or severely depleted. One suggestion has been sudden peaks in volcanic activity, hinted at by spikes in the abundance of mercury of marine sediments. Brian Fields of the University of Illinois, with colleagues from the USA, UK, Estonia and Switzerland, have closely examined the possibility and the testability of a supernova’s influence (Fields. B.D. et al. 2020.  Supernova triggers for end-Devonian extinctions. Proceedings of the National Academy of Sciences, v. 117, article 202013774; DOI: 10.1073/pnas.2013774117).

They propose the deployment of mass-spectrometric analysis for anomalous stable-isotope abundances in the sediments that contain faunal evidence for accelerated extinction, particularly those of 146Sm, 235U and the long-lived plutonium isotope 244Pu (80 Ma hal-life). They suggest that the separation of the extinction into several events, may be a clue to a supernova culprit. A gamma-ray burst would arrive at light speed, but dust – containing the detectable isotopes –  although likely to be travelling very quickly would arrive hundred to thousands of years later, depending on the distance to the supernova. Cosmic rays generated by the supernova, also a possible kill mechanism, given a severely depleted ozone layer, travel about half the speed of light. Three separate arrivals for the products of a single stellar explosion are indeed handy as an explanation for the Late Devonian extinctions. But someone needs to do the analyses. The long-lived  plutonium isotope is the best candidate: even detection of a few atoms in a sample would be sufficient proof. But that would require a means of ruling out contamination by anthropogenic plutonium, such as analysing the interior of fossils. But would even such an exotic discovery prove the sole influence of a galactic even?

Fossil fuel, mercury and the end-Palaeozoic catastrophe

Siberian flood-basalt flows in the Putorana Plateau, Taymyr Peninsula, Russia. (Credit: Paul Wignall)

The end of the Permian Period (~252 Ma ago) saw the loss of 90% of marine fossil species and 70% of those known from terrestrial sediments: the greatest known extinction in Earth’s history. In their naming of newly discovered life forms, palaeontologists can become quite lyrical. Extinctions, however, really stretch their imagination. They call the Permo-Triassic boundary event ‘The Great Dying’. Why not ‘Permageddon’? Sadly, that was snaffled in the 1980s by an astonishingly short-haired heavy-metal tribute band. Enough bathos … The close of the Palaeozoic left a great many ecological niches to be filled by adaptive radiation during the Triassic and later Mesozoic times. Coinciding with the largest known flood-basalt outpouring – the three million cubic kilometres of Siberian Traps – the P-Tr event seemed to be ‘done and dusted’ after that possible connection was discovered in the mid 1990s. Notwithstanding, the quest for a gigantic, causative impact crater continues (see: Palaeobiology Earth-logs, May, September and October 2004), albeit among a dwindling circle of enthusiasts. The Siberian Traps are suitably vast to snuff the fossil record, for their eruption must have belched all manner of climate-changing gases and dusts into the atmosphere; CO2 to encourage global warming; SO2 and dusts as cooling agents. There is also evidence of a role for geochemical toxicity (see: Nickel, life and the end-Permian extinction, June 2014). The extinctions accompanied not only climate change but also a catastrophic fall in atmospheric oxygen content (see: Homing in on the great end-Permian extinction, April 2003; When rain kick-started evolution, December 2019). Recovery of the biosphere during the early Triassic was exceedingly slow.

Research focussed on the P-Tr boundary eventually uncovered an element of pure chance. Shales in Canada that span the boundary show major, negative δ13C excursions in the carbon-isotope record that coincide with fly ash in the analysed layers. This material is similar in all respects to that emitted from coal-fired power stations (see: Coal and the end-Permian mass extinction, March 2011). The part of Siberia onto which the flood basalts were erupted is rich in Permian coal measures and oil shales that lay close to the surface 252 Ma ago. The coal ash and massive emissions of CO2 may have resulted from their burning by the flood basalt event. Now evidence has emerged that this did indeed happen (Elkins-Tanton, L.T. et al. 2020. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology, v. 48, early publication; DOI: 10.1130/G47365.1).

The US, Canadian and Russian team found large quantities of burnt coal and woody material, and bituminous blobs in 600 m thick volcanic ashes at the base of the Siberian traps themselves. They concluded that the magma chamber from which the flood basalts emerged had incorporated sizeable volumes of the coal measures, leading to their combustion and distillation. This would have released CO2 enriched in light 12C due to isotopic fractionation by biological means, i.e. its δ13C would have been sufficiently negative to affect the carbon locked up in the Canadian P-Tr boundary-layer shales that show the sharp isotopic anomalies. The magnitude of the anomalies suggest that between six to ten thousand billion tons of carbon released as CO2 or methane by interaction of the Siberian Traps with sediments through which their magma passed could have created the global δ13C anomalies. That is about one tenth of the organic carbon originally locked in the Permian coal measures beneath the flood basalts

Another paper whose publication coincided with that by Elkins-Tanton et al. suggests that environmental mercury appears to have followed the same geochemical course as did carbon at the end of the Palaeozoic Era (Dal Corso, J. and 9 others 2020. Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nature Communications, v. 11, paper 2962; DOI: 10.1038/s41467-020-16725-4). This group, based at Leeds and Oxford Universities, UK and the University of Geosciences in Wuhan, China, base their findings on biogeochemical modelling of the global carbon and mercury cycles at the end of the Permian. Their view is that the coincidence in marine sediments at the P-Tr boundary of a short-lived spike in mercury and an anomaly in its isotopic composition with the depletion in 13C, described earlier, shows an intimate link between mercury and the biological carbon cycle in the oceans at the time. They suggest that this synergy marks ecosystem collapse and derives ‘from a massive oxidation of terrestrial biomass’; i.e. burning of organic material on the land surface. Their modelling hints at huge wildfires in equatorial peatlands but also a role for the Siberian flood-basalt volcanism and the incorporation of coal measures into the Siberian Trap magma chamber.

Geochemistry and the Ediacaran animals

Hopefully, readers will be fairly familiar with the sudden appearance of the Ediacaran fauna – the earliest abundant, large animals – at the start of the eponymous Period of the Neoproterozoic around 635 Ma. If not, use the Search Earth-logs box in the side bar to find extensive coverage since the start of the 21st century. A June 2019 Earth-logs review of the general geochemical background to the Ediacaran Period can be found here. Ten years ago I covered the possible role of the element phosphorus (P) – the main topic here – in the appearance of metazoans (see: Phosphorus, Snowball Earth and origin of metazoans – November 2010).

One of the major changes in marine sedimentation seen during the Ediacaran was a rapid increase in the deposition on the ocean floor of large bodies of P-rich rock (phosphorite), on which a recent paper focuses (Laakso, T.A. et al. 2020. Ediacaran reorganization of the marine phosphorus cycle. Proceedings of the National Academy of Sciences, v. 117, p. 11961-11967; DOI: 10.1073/pnas.1916738117). It has been estimated that on million-year time scales phosphorites remove only a tiny amount of the phosphorus carried into the oceans by rivers. So, conversely, an increase in deposition of marine P-rich sediment would have little effect on the overall availability of this essential nutrient from the oceans. The Ediacaran boost in phosphorites suggests a connection between them and the arrival of totally new ecosystems: the global P-cycle must somehow have changed. This isn’t the only change in Neoproterozoic biogeochemistry. Thomas Laakso and colleagues note signs of slightly increased ocean oxygenation from changes in sediment trace-element concentrations, a major increase in shallow-water evaporites dominated by calcium sulfate (gypsum) and changes in the relative proportions of different isotopes of sulfur.

Because all marine cycles, both geochemical and those involving life, are interwoven, the authors suggest that changes in the fate of dead organic matter may have created the phosphorus paradox. Phosphorus is the fifth most abundant element in all organisms after carbon, hydrogen, nitrogen and oxygen, followed by sulfur (CHNOPS), P being a major nutrient that limits the sheer bulk of marine life. Perhaps changes to dead organic matter beneath the ocean floor released its phosphorus content, roughly in the manner that composting garden waste releases nutrients back to the soil. Two chemical mechanisms can do this in the deep ocean: a greater supply of sinking organic matter – essentially electron donors – and of oxidants that are electron acceptors. In ocean-floor sediments organic matter can be altered to release phosphorus bonded in organic molecules into pore water and then to the body of the oceans to rise in upwellings to the near surface where photosynthesis operates to create the base of the ecological food chain.

Caption The Gondwana supercontinent that accumulated during the Neoproterozoic to dominate the Earth at the time of the Ediacaran (credit: Fama Clamosa, at Wikimedia Commons)

There is little sign of much increase in deep-ocean oxygen until hundreds of million years after the Ediacaran. It is likely, therefore, that increased availability of oxidant sulfate ions (SO42-) in ocean water and their reduction to sulfides in deep sediment chemically reconstituted the accumulating dead organic matter to release P far more rapidly than before. This is supported by the increase in CaSO4 evaporites in the Ediacaran shallows. So, where did the sulfate come from? Compressional tectonics during the Neoproterozoic Era were at a maximum, particularly in Africa, South America, Australia and Antarctica, as drifting continental fragments derived from the break-up of the earlier Rodinia supercontinent began to collide. This culminated during the Ediacaran around 550 Ma ago with assembly of the Gondwana supercontinent. Huge tracts of it were new mountain belts whose rapid erosion and chemical weathering would have released plenty of sulfate from the breakdown of common sulfide minerals.

So the biological revolution and a more productive biosphere that are reflected in the Ediacaran fauna ultimately may have stemmed from inorganic tectonic changes on a global scale

Genetic material from a baby dinosaur

A clutch of Massospondylus carinatus eggs from the Jurassic of South Africa (credit: Brett Eloff)

Recently, a lot of publicity focussed on stunning CT scans of embryos preserved in fossilised eggs of a Jurassic sauropodomorph dinosaur, which were obtained using very high energy X-rays generated by a synchrotron in France (Chapelle, K.E.J. et al. 2020. Conserved in-ovo cranial ossification sequences of extant saurians allow estimation of embryonic dinosaur developmental stages. Nature Scientific Reports, v. 10, article 4224; doi: 10.1038/s41598-020-60292-z). The images suggest that the embryos’ skulls developed in much the same way as do those of living reptiles. Within a week there emerged an even more compelling dinosaurian scoop: a fossil nestling of a duck-billed dinosaur (hadrosaur) from the Upper Cretaceous of Montana is reported to have yielded evidence for a broad spectrum of cellular materials (Bailleul, A.M. et al. 2020. Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage. National Science Review, v. 7, advance publication NWZ206; DOI: 10.1093/nsr/nwz206).

Alida Bailleul, who works at the Chinese Academy of Sciences in Beijing, and fellow molecular palaeontologists from Canada, the US and Sweden, examined material from the nestling’s skull that was suspected to contain traces of cartilage. Their methods involved microscopic studies of thin sections together with staining and fluorochemical analysis of cellular material extracted by dissolving away bone tissue in acid. The same methodologies were also applied to similar material from modern emu chicks as a means of validating the results from the fossil. Staining used the same chemical that previously had revealed blood proteins in a specimen of Tyrannosaurus rex (see: Blood of the dinosaurs  in Palaeobiology, January 2011). The fluorescence approach dosed the dinosaur cartilage with antibodies against bird collagen, and revealed an immune reaction (green fluorescence) in both fossil material and that from the baby emus.

The researchers also isolated cartilage cells (chondrocytes) from the dinosaur preparations. Two stains (PI and DAPI, for short) that show up DNA were applied, giving positive responses. The PI (propidium iodide) stain is useful as it does not respond to DNA in living material, bit only to that in dead cells, thereby helping to rule out contamination with modern material. Apparently, the double-staining experiments support the presence of double-stranded material that involves at least six base pairs (of ACTG amino acids). This does not prove the existence of dinosaur DNA, but does demonstrate that the hadrosaur’s cell nuclei are preserved.

Does that suggest that the hunt is on for a dinosaur genome, with all its connotations? OK, a complete genome has been extracted from a frozen Siberian mammoth a few tens of thousand years old, which encourages ‘re-wilding’ aficionados, but that animal preserved intact cells of many kinds. A 70 Ma old dinosaur fossil, however exquisitely preserved, is mostly ‘rock’, in that preservation is through mineralisation of bone and tissue, and even cells … Moreover, it is possible that what the team found may even be material from post-mortem bacterial colonisation of any age younger than 70 Ma.

See also: De Lazaro, E. 2020. Scientists Use X-rays to Peer inside Fossilized Dinosaur Eggs Sci News, 10 April 2020; Black, R. 2020. Possible dinosaur DNA has been found. Scientific American, 17 April 2020

Pterosaur corner

I recall an anecdote related by David Attenborough about a celebrity reception that he once attended one evening after he had been filming for a sequence on the aerodynamics of pterodactyls. A venerable and obviously well connected lady engaged him in conversation, and asked him what he had been doing recently. “Actually, today I was flying a pterodactyl”. To which the old lady retorted, “Yes, they are so graceful, aren’t they”. They do have a large following, perhaps second only to dinosaurs, and three interesting items came to my attention in the last couple of weeks.

One of the known pterosaur groups is the Tapejaridae, comprising small to medium-sized pterosaurs with wingspans up to 4 m. They are quite spectacular in appearance, having large crests relative to their overall size. Their fossils have turned up in Cretaceous sediments in South America, Europe and China, and a new find in Morocco (Afrotapejara zouhrii) extends their range to Africa (Martill, D.M. et al. 2020. A new tapejarid (Pterosauria, Azhdarchoidea) from the mid-Cretaceous Kem Kem beds of Takmout, southern Morocco. Cretaceous Research. V. 112: onlin, 104424; DOI: 10.1016/j.cretres.2020.104424). See also: De Lazaro, E. 2020. New species of pterosaur discovered in Morocco (Sci News, 6 April)

Also reported in Cretaceous Research are three new species of toothed, fish-eating pterosaurs of the ornithocheirid group. They too come from the Cretacous Kem Kem beds of Morocco, and again adding Africa to the range of the genera to which they belong. Even the largest flying animals known to science have emerged from the same strata. These are the azhdarchid pterosaurs, the largest of which had a wing span of more than 9 metres and stood at the height of a giraffe when on the ground.

See: Anderson, N, 2020. New pterosaur fossils unearthed in Morocco (Sci News, 26 March)

Being so widely spread, these pterosaur group’s mode of flight must have been extremely efficient, perhaps even matching that of today’s albatrosses, which use turbulence over ocean waves to glide effortlessly, indeed the epitome of graceful travel. How they achieved such vast ranges is partly due to their extremely light-weight bones that were paper thin but strong because they contained vesicles filled with gas, much like the expanded polystyrene used in model pterosaurs of the kind flown by ‘Whispering Dave’ as Sir David Attenborough is fondly known. Their bone structures are similar, in this respect, to those of modern birds.

launch of Hatzegopteryx
Reconstruction of the giant pterosaur Hatzegopteryx launching into the air, just after the forelimbs have left the ground (credit: Mark Witton)

So, how did these graceful beasts fly? Like those of bats, pterosaurs’ wings were membranes, but rather than being supported by five elongated digits, as in bats, those of pterosaurs extended from their bodies to a single elongated ‘finger’ or digit: hence their old name pterodactyl, translated from the Greek as ‘wing finger’. For a long while, it was believed that pterosaurs had to live on high ground, even cliffs, in order to launch themselves in the manner of a hang glider. Reconstructions of their gait on the ground generally look extremely ungainly: they walked on their ‘wrists’ and the other three, small ‘fingers’ of their forelimbs.. How they probably launched themselves emerges from a detailed paper linking natural flight modes of birds, bats and pterosaurs to conceivable developments in aeronautics inspired by them (Martin-Silverstone, E. et al. 2020. Volant fossil vertebrates: potential for bioinspired flight technology. Trends in Ecology and Evolution, v. 35, in press 9 April 2020; DOI: 10.1016/j.tree.2020.03.005). The authors point to the great strength of the membrane structure itself, conferred by its three-layered structure, and to the aerodynamic properties of the wing. They conclude that, whereas pterosaurs were probably incapable of high-speed flight, they were extremely efficient at low speeds, ideal for soaring and for low-speed landing that would not endanger their fragile bodies. Simply by springing into the air using all four limbs they could attain sustained flight, although the largest of them were close to the limit. The necessary muscles actually made up about 40% of their body mass. See a reconstruction of the launch of the largest pterosaur, Quetzalcoatlus from the Late Cretaceous of North America

See also: Fossil Flyers Hold Secrets to Better Flight Technologies (Sci News, 18 April)

How did monkeys get to South America?

This is one of the great mysteries of palaeontology. There are plenty of monkey species in South and Central America and in Mexico. They are members of five families, collectively known as platyrrhine (‘flat-nosed’) primates, all having wide-spaced nostrils compared with the primates of the ‘Old World’. They are the catarrhines (‘hook-nosed). There are other differences, such as the unique prehensile tails of many ‘New World’ monkeys. The two monkey groups are genetically related, but their last common ancestor is estimated, using the ‘molecular clock’ approach, to have lived at least 31 Ma ago, in the Oligocene. The earliest platyrrhine primates of the Americas date to around the Eocene-Oligocene boundary (34 Ma). Interestingly, they are predated by the earliest rodent remains by only a few million years (41 Ma). Both primates and rodents had been inhabiting other continents long before this, so it is certain that, somehow, members of the two groups must have migrated to become isolated in the Americas. The problem lies with palaeogeography. By the late-Eocene the Americas were completely separated from Eurasia and Africa by the actively spreading Atlantic Ocean, then between 1500 to 2000 km wide. Complete isolation of the Americas dates from around 60 Ma ago, when the northernmost part of the North Atlantic began to open. The South Atlantic had become a wide ocean long before that, beginning in the far south during the early Cretaceous Period (138 Ma), with the mid-Atlantic Ridge steadily propagating northwards thereafter.

35 Ma
World palaeogeography at the Eocene-Oligocene boundary. The site of a recent fossil primate discovery in eastern Peru is marked by the yellow dot.

Since 60 Ma years ago it would have been impossible for the ancestors of ‘New World’ rodents and primates simply to have walked there. In any case the earliest known primate fossils from China are just 55 Ma old. Island hopping across the far northern, narrowest part of the North Atlantic during the Eocene may have been possible, although many islands there could have been subject to intense volcanic activity, as is Iceland today. The only alternative is a sea trip across the mighty Atlantic. Unless, that is, there is a hitherto undiscovered land bridge. The Walvis-Rio Grande Rise – a hotspot track – that spans the South Atlantic Ocean floor from Namibia to São Paulo in Brazil, has been the subject of some speculation since it is dotted with sea mounts and in places has micro-continental fragments. But it is too deep to have emerged as a result of falls in sea level. To suggest that the > 1500 km migration to the Americas of ancestral platyrrhine primates, or rodents for that matter, involved their being carried on drifting vegetation rafts obviously invites scepticism. For starters, why only two groups of animals? Or, could that imply a one-off event carrying only ancestral rodents and monkeys? It would need to be a special kind of raft: large enough to provide security against storm waves; immune to waterlogging, and carrying substantial food. On the plus side, there are powerful east-to-west currents in the equatorial Atlantic and trade winds going in the same direction, thanks to the Coriolis effect and ultimately Earth’s rotation. Islands as ‘way-points’ or temporary refuges are less convincing, for they would have to be heavily vegetated themselves to provide onward rafts. Apparently, in the absence of anything more plausible, Sherlock Holmes’s principle points to trans-Atlantic rafting.

This issue recently became ‘live’ again, with a fossil discovery in Peru, in an upper Amazon river bank close to at the Andean watershed but around 4000 km from the east coast of South America (Seiffert, E.R.  et al. 2020. A parapithecid stem anthropoid of African origin in the Paleogene of South America. Science, v. 368, p. 194-197; DOI: 10.1126/science.aba1135). The site had previously yielded both playrrhine monkey and rodent remains. To these have been added teeth with distinct similarities to those of fossils previously known only from Egypt, Libya and Tanzania: parapithecid anthropoids whose teeth are sufficiently different from those of platyrrhines to warrant a separate suborder, which includes baboons and primates. This is the only trace of parapithecids in South America and it may be assumed that, although they were possibly fellow-travellers with New World monkey ancestors, they were unable to compete and became extinct.

However, there is another possibility. Albeit with a sparse record of fossils resembling primates, North America does have at least one. George Gaylord Simpson (1902-1984), once the doyen of US palaeontologists, found a marmoset-like fossil in the early-Eocene of Wyoming, which he named Teilhardinia after the French Jesuit philosopher and palaeontologist Teihard de Chardin. It is about 56 Ma old and the size of a mouse. So was this diminutive the pioneer New World primate that crossed the northern North Atlantic? If so it would have had an equally perilous journey to reach South America, because the Isthmus of Panama was also open sea until around 4.5 Ma ago. With Teilhardinia, the plot thickens for there are several known species: in the US T. brandti from Wyoming and T. magnoliana from Mississippi; in Asia and Europe T. asiatica and T. belgica respectively. An embarrassment of riches that may well ignite: it has been suggested that North American Teilhardinia may have been the first of all primates and spread across the Eocene forests of North America, Europe and Asia. That hypothesis sort of implies that the entry of monkeys into South America may well have started with the tiny continent hopper who passed on its proclivities to its descendants in Africa

See also: Godinot, M. 2020. Rafting on a wide and wild ocean. Science, v. 368, p. 136-137; DOI: 10.1126/science.abb4107; Ancient teeth from Peru hint now-extinct monkeys crossed Atlantic from Africa. Science Daily, 9 April 2020. Oldest-known ancestor of modern primates may have come from North America, not Asia. Science Daily, 29 November 2018

Early days of the dog

Wolves and dogs are interfertile and the mating of a domestic dog with a wolf results in fertile offspring, unlike the case with hybrids of horse and donkey, lion with tiger etc. This suggests that both canids are so closely related that domestication of wolves led to the entire range of dog breeds shown at Crufts every year. The question is, “When did humans first domesticate wolves”? Provided the instinctive ‘rules’ of wolves are followed by a human a wolf pup can become a pet, if it is taken from its mother between 14 and 21 days after birth. But, not only are they expensive to feed on raw meat, they may well attack a stranger as they would in the wild go for a wolf from another pack. They are often loyal and playful towards whoever raised them, but are strictly ‘one-person’ animals, and difficult to train because they easily become bored. Taming wolf puppies and deliberate selection is one route to domestication and the first dogs, another being ‘self-domestication’ when wolves become dependent on humans for a share in food.

pet wolf
Raven the wolf greets a visitor to the Mission: Wolf sanctuary in Colorado USA (credit: Wikipedia)

Comparison of wolf (Canis lupus) and domestic dog (Canis familiaris) genomes suggest an age of divergence for the two populations may have occurred between 20 to 60 thousand years ago. Indeed the DNA of wolf remains from Siberia showed it to belong to a wolf population whose descendants contributed to domestication of sledge dogs, such as Greenlandic huskies and Alaskan malemutes. Yet this approach is difficult and the results uncertain. Discovery of canid skulls associated with the remains of humans and mammoths at a 28.5 ka old site in the Czech Republic seems to have resolved both a minimum age for domestication and how it was achieved (Prassack, K.A. et al. 2020.  Dental microwear as a behavioral proxy for distinguishing between canids at the Upper Paleolithic (Gravettian) site of Předmostí, Czech Republic. Journal of Archaeological Science, v. 115, published online; DOI: 10.1016/j.jas.2020.105092).paleolithic dog

The Předmostí canids show two skull shapes: one with long jaws like wolves, the other with shorter, more dog-like jaws. Kari Prassack of the US National Park Service and colleagues from the USA, the Czech Republic and Belgium, turned to dental micro-wear patterns to resolve differences between the two groups as regards diet. Teeth from the more wolf-like group showed wear patterns consistent with a diet dominated by raw flesh, whereas the short-jawed canids ate mainly hard, brittle foods, probably bones. A truly remarkable find at the site was a near-complete canid skull of the short-jawed type, with a bone between its front teeth. Could this be a sign of a carefully buried pet ‘proto-dog’?

Earlier studies of the Předmostí canids included isotopic analyses of their bones, and those of associated humans. Interestingly, the more wolf-like group and the humans had diets dominated by mammoth flesh. The possible proto-dogs had focused on reindeer and other prey, as had the lions whose bones also occur at the site. This further complicates interpretation. Did both wolves and proto-dogs accompany the humans, the first being fed with mammoth meat that they helped bring down, while the second were fed scraps from smaller, more commonly killed prey? Perhaps the early dogs developed over a long period as scavengers on the kills of lions, and then became associates of humans. Yet neither canid would find a mammoth easy prey, even hunting in packs. So did the ice-age hunters have two companion animals, perhaps one to help in hunting mammoth, the other for more day-to-day hunting, which became more domesticated and even kept as pets? As the authors conclude; more data are needed.

See also: Dog domestication during ice age (Science Daily)

A lowly worm from the Ediacaran?

Humans are more or less symmetrical, our left and right sides closely resembling each other. That is not so comprehensive for our innards, except for testes and ovaries, kidneys, lungs, arteries and veins, lymph and nervous systems. We have front- and rear ends, top and bottom, input and output orifices. All that we share with almost all other animals from mammals to worms, particularly at the earliest, embryonic stage of development. We are bilaterians, whereas sponges, ctenophores, placozoans and cnidarians are not – having either no symmetry at all, or just a bottom and a top – and are in a minority.  Fossil collections from Cambrian times also reveal bilaterians in the majority, at least insofar as preservation allows us to tell. Before 541 Ma ago, in the Precambrian, there are few signs of such symmetry and faunas are dominated by the flaccid, bag like creatures that form much of the Ediacaran Fauna, although there are traces of creatures that could move and graze, and had a rudimentary sense of direction (see: Burrowers: knowing front from back, July 2012 and Something large moved 2 billion years ago). Unsurprisingly, palaeobiologists would like to know when ‘our lot’ arose. One route is via comparative genetics among living animals, using DNA differences and the ‘molecular clock’ approach to estimate the age of evolutionary separation between ‘us’ and ‘them’. But the spread of estimated ages is so broad as to render them almost meaningless. And the better constrained ages of very old trace fossils rely on accepting an assumption that they were, indeed, formed by bilaterians. Yet ingenuity may have revealed an actual early bilaterian from such traces.lowly worm

Palaeobiologists from the US and Australia have scoured the famous Ediacara Hills of South Australia for traces of burrowing and signs of the animal that did it (Evans, S.D. et al. 2020. Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proceedings of the National Academy of Sciences, v. 117, online; DOI: 10.1073/pnas.2001045117). One Ediacaran trace fossil, known as Helminthoidichnites is preserved as horizontal trails on the tops and bottoms of thin, discontinuous sand bodies. Luckily, these are sometimes accompanied by elongate ovoids, like large grains of rice. From numerous laser scans of these suspected burrowers, and the traces that they left the authors have reconstructed them as stubby, possibly segmented, worm-like animals that they have called Ikaria wariootia, which may have grazed on algal mats. This name is derived from the local Adnyamathanha people’s word (Ikara  or ‘meeting place’) for the locality, a prominent landmark, near Warioota Creek. The age of the sedimentary sequence is between 551 to 560 Ma, and perhaps a little earlier. They could be the earliest-known bilaterians, but the sandy nature of the rocks in which they occur precludes preservation of the necessary detail to be absolutely sure: that would require silt- or. clay-sized granularity

See also: Fossil worm shows us our evolutionary beginnings (BBC, Science and Environment)