Ancient deep groundwater

Worldwide, billions of people depend on groundwater for their water needs from wells, deep boreholes and natural springs. Even surface water in rivers and lakes is directly connected to that moving sluggishly below the surface. In fact the surface water level marks where the water table coincides with the land surface. From season to season the water table rises and falls and so too do river and lake levels, depending on fluctuations in rainfall, snow melt, evaporation and extraction. Where it is present, vegetation plays a role in the hydrological cycle, through transpiration from roots through stems and leaves, from which it is exhaled by minute pores or stomata; effectively plants are able to pump water through their tissues to a height of up to a hundred metres.  Groundwater, like that at the surface, moves under gravity roughly parallel to the slope of the land surface from the place where precipitation infiltrates soil and rock. But the deeper it is the slower the flow and the less it is in direct contact with surface processes to be replenished by infiltration. Wells and boreholes rarely penetrate deeper than a few hundred metres, so that the vast bulk of groundwater is never used. Indeed most deep groundwater would not be drinkable or suitable for irrigation since over millennia or longer it dissolves material from the rock that contains it to become saline. In some deep sedimentary aquifers it may actually be composed of seawater trapped at the time of sedimentation.

Damp conditions in the Mponeng gold mine near Johannesburg, South Africa, the world’s deepest at 3.8 km below the surface with planned expansion to 4.3 km (Credit: AngloGold Ashanti)

The pore spaces in sandstones and fractures in limestones, the most common aquifers, are not the only conduits for groundwater. Crystalline igneous and metamorphic rocks are generally full of minute fractures resulting from their tectonic history. The deepest mines in crystalline basement, such as the gold mines of the Johannesburg area in South Africa, penetrate almost 4 km below the surface, yet are by no means dry and have to be pumped to stave off flooding. The water is a brine containing sodium and calcium chloride with high concentrations of dissolved, reduced gases such as hydrogen, methane and ethane (C2H6). Studies of the proportions of oxygen isotopes in the water reveal that the water in the fractures is very different from that in modern rainwater: this fluid is completely isolated from the modern hydrological cycle and is very old indeed. Just how old has now been determined (Warr, O. et al. 2022. 86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system. Nature Communications v. 13, Article number 3768; DOI: 10.1038/s41467-022-31412-2).

Brine extracted from a borehole in the floor of the Moab Khotsong gold/uranium mine also contains the noble gases helium, neon, argon, krypton and xenon. Noble gases are present in today’s atmosphere, so conceivably they may have originally entered the brine in rain water that seeped along fractures. However, when their isotopes are measured their proportions are very different from those in air. There are excesses of 4He, 21Ne, 22Ne, 40Ar, 86Kr and several isotopes of Xe. These isotopes are emitted during the radioactive decay of uranium, thorium and 40K, the main heat producing isotopes in the crust and mantle. Oliver Warr of the University of Toronto Canada and geochemists from Oxford University UK, Princeton University and the New Mexico Institute of Mining and Technology US, and the Sorbonne France show that originally atmospheric noble gases have been enriched in these radiogenic isotopes. Their present isotopic proportions therefore give clues to the time when air dissolved in groundwater was trapped in the host rock more than a billion years ago. A complicating factor is that the host rocks themselves are dated at about three times that age. They suggest that the fractures systems were initiated by the Vredfort asteroid impact at 2.0 Ga to form aquifers, but they became isolated from hydrological circulation around 1.2 Ga and now now contain the world’s oldest groundwater.

One of the implications of the study is that such trapped water may be present at depth in the crust of Mars, despite its current aridity. Another is that, because the fluid contains hydrogen, sulfate ions and hydrocarbon gases, it can potentially support organisms that use them to power their metabolism and reproduce. In 2008 microbes were found living in similar ancient groundwater 2.4 km below the surface in the Kidd Creek Mine, Canada, at a level of around 5 thousand cells per millilitre (50 times less than in surface water). They are powered by reduction of sulfate ions to sulfide. In 2008 another peculiar discovery in the deep biosphere emerged from the Mponeng gold mine near Johannesburg, South African (the world’s deepest) in the form of a living sulfate reducing bacterium Desulforudis audaxviator. DNA  analysis of the ancient water revealed that it was the sole inhabitant, a biological mystery confirmed by later deep-biosphere studies in Death Valley, USA, and Siberia.

See also: Researchers uncover life’s power generators in the Earth’s oldest groundwaters, EurekaAlert, 5 July 2022; Mantle link with biosphere, July 2009

Climate out of control after the Permian-Triassic mass extinction

The snuffing out of up to 90 percent of all terrestrial and marine species at the end of the Permian (252 Ma) was the outcome of lethal climatic warming. It probably stemmed from a stupendous episode of flood basalt volcanism and intrusions in what is now Siberia that burned vast amounts of peat or coal in the basin that the flows filled (see: Coal and the end-Permian mass extinction; March 2011). The carbon dioxide so released created planetary hyperthermia and toxic acid rain. For at least five million years Earth was an almost sterile world, a notable absence being dense vegetation on the land surface – the Early Triassic is devoid of coal, whereas there is plenty of Late Permian age. Much the same slow recovery of life is found in meagre collections of land and marine animal fossils of that age. Yet, other mass extinctions were followed by recovery and species diversification at a much faster pace.

One conceivable explanation could be the near absence of vegetation whose photosynthesis and burial would otherwise draw down CO2 and the same goes for its marine equivalent phytoplankton. But there is a powerful inorganic means of carbon sequestration: silicate weathering. The chemistry depends on carbon dioxide dissolved in water. For simple silicates it can be expressed as:

2CO2 + H2O + CaSiO3 → Ca2+ + 2HCO3 + SiO2.

The higher the ambient temperature, the faster such reactions proceed. Most silicates are more complex and many common ones, such as feldspars, include aluminium, so that another product of weathering is insoluble, fine-grained clay minerals. So various soluble metal ions (Ca, Mg, K, Na etc), dissolved bicarbonate ions, silica in various guises and clays eventually end up in the sea. Once there, it is possible for them to recombine, as for instance calcium and bicarbonate ions:

Ca2+ + 2HCO3→ CaCO3 + CO2 + H2O

Despite some CO2 gas being released, this reaction results in a net sequestration of carbon in calcium carbonate. Incidentally, the same kind of chemical reaction occurs in the soils produced by weathering. The carbonate may cement soils to form a hard crust of caliche or ‘calcrete’. Chemical weathering enhanced by a hot climate, it might seem, should reduce the greenhouse effect quickly: a feedback mechanism that normally stabilises climate. But that did not happen after the P-Tr extinction event, thereby stressing all remaining life forms. A group of scientists at the University of Waikato in New Zealand have developed a possible explanation for this potentially fatal hazard for life on Earth (Isson, T.T. et al. 2022. Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth. Nature Communications, v. 13, article 3509; DOI: 10.1038/s41467-022-31128-3). It focuses on the silica (SiO2) released by chemical weathering, which enters the ocean in the form of a colloid: Si(OH)4, a form of silicic acid known as ‘reactive silica’. Under ‘normal’ conditions, this is removed by organisms, such as diatoms and radiolaria, and is constantly recycled on a time scale of about 400 years, some contributing to deep-ocean oozes in the form of chert. But, like all other marine organisms, they too were victims of the P-Tr mass extinction.

Examples of marine radiolaria (top)

Reactive silica colloids in seawater also participate in inorganic chemical reactions, combining with dissolved metal ions to form complex hydrated aluminosilicates, i.e. more clay minerals. The reactions change the alkalinity of seawater. As a result dissolved HCO3ions transform to CO2 gas and water. Despite the complexity of the chemistry that interweaves the carbon and silicon cycles, there is a simple conclusion. If the abundance of silica-secreting marine organisms falls drastically while continental weathering continues to deliver silica, clay-mineral formation on the ocean floor results in release of CO2 that reverses the effect of enhanced weathering and thus maintains hyperthermal conditions. The other outcome is that less chert and flint granules form Terry Isson and colleagues examined the varying proportion of chert in cores through Lower Triassic marine sediments. A ‘chert gap’characterises the 4 to 6 Ma following the P-Tr boundary event. This can be explained in part by extinction of silica-secreting organisms and by inorganic reactions converting the reactive silica that enhanced weathering delivered to the oceans to clay minerals. This supports the idea that the inorganic part of the silica cycle maintained greenhouse conditions in the absence of organic ‘competition’ for reactive silica. Many other biogeochemical cycles link biological and chemical processes that combine to affect climate: involving phosphorus, nitrogen and iron, to name but three.

Evidence for oldest microbes from Arctic Canada

Among the oldest known rocks are metamorphosed pillow basalts on Nuvvuagittuk Island in Quebec on the east side of Hudson Bay, Canada. They contain red and orange, iron-rich sediments probably formed by hydrothermal activity associated with sea water passing through hot basalts. The ironstones are made of silica in the form of jasper (SiO2) and carbonates that are coloured by hematite (Fe2O3). This rock sequence is cut by silica-rich intrusive igneous rocks dated between 3750 and 3775 Ma: a minimum, Eoarchaean age for the sequence. This is roughly the same as the age of the famous Isua supracrustal rocks of West Greenland, but dating of the basalts using the samarium–neodymium method suggested that they formed in the Hadean about 4300 Ma ago, which would make them by far the oldest known rocks. However, that date clashes with a zircon U-Pb age of 3780 Ma for associated metasedimentary mica schists: a still ‘live’ controversy. The ironstones have been suggested to contain signs of life, in the form of minute tubes and filaments similar to those formed in modern hydrothermal vents by iron-oxidising bacteria (see: Earliest hydrothermal vent and evidence for life, March 2017). If that can be proven this would push back the age of the earliest known life by at least 300 Ma and maybe far more if the Hadean Sm-Nd age is confirmed

The Nuvvuagittuk material has recently been re-examined by its original discoverers using a variety of advanced microscope techniques (Papineau, D. et al 2022. Metabolically diverse primordial microbial communities in Earth’s oldest seafloor-hydrothermal jasper. Science Advances, v. 8, article 2296; DOI: 10.1126/sciadv.abm2296.). The most revealing of these involve two very-high resolution imaging systems: X-ray micro-tomography and electron microscopy armed with a focused ion beam that repeatedly shaves away 200 nm of rock from a sample. Both build up highly detailed 3-D images of any minute structures within a sample. The techniques revealed details of twisted filaments, tubes, knob-like and branching structures up to a centimetre long. While the first three could possibly have some inorganic origin, a ‘comb-like’ branch, likened to a moth’s antenna, has never been known to have formed by chemical reactions alone.

An image of hematite tubes from microfossils discovered in hydrothermal vent precipitates in the Nuvvuagittuk ironstones, reconstructed from X-ray and ion-beam micro-tomography (credit: Matthew Dodd, UCL)

All the structures are formed from hematite within a silica or carbonate (mainly calcite CaCO3 and ankerite Ca(Fe,Mg,Mn)(CO3)2) matrix. Some of the hematite (dominated by Fe3+) contains significant amounts of reduced Fe2+. The structures also contain tiny grains of graphite (C), phosphate (apatite Ca5(PO4)3(F,Cl,OH)) and various metal (Mn, Co, Cu, Zn, Ni, Cd) sulfides. The presence of graphite obviously suggests – but does not prove – a biological origin. However, all Phanerozoic jaspers formed from hydrothermal fluids contain undisputed organic material and appear little different from these ancient examples. Filaments, tubes and comb-like structures are displayed by various iron-oxidising bacteria found living in modern sea-floor hydrothermal vent systems. The sulfur isotopes in metal sulfides suggest their formation in an environment with vanishingly low oxygen content. Carbon isotopes in graphite are more enriched in light 12C relative to 13C than those in associated carbonates, a feature produced by living organic processes today. Patterns in plots of rare-earth elements (REE) from the Nuvvuagittuk jaspers are similar to those from modern examples and suggest high-temperature interactions between sea water and basaltic igneous rocks.

It is clear from the paper just how comprehensively the team of authors have considered and tested various biotic and abiotic options for the origin of the features found in the Nuvvuagittuk jasper samples. They conclude that they probably do represent an ancient microbial ecosystem associated with sea-floor hydrothermal vents; a now widely supported scenario for the origin of life on Earth. But what metabolic processes did the Nuvvuagittuk microbes use? Their intimate association with Fe3+ oxides that contain some reduced Fe2+ suggests that they exploited chemical ‘energy’ from oxidation reactions that acted on Fe2+ dissolved in hydrothermal fluids. This would have been impossible by inorganic means because of the very low oxygen content of seawater shown by the sulfur isotopes in associated sulfide minerals. Iron oxidation and precipitation of iron oxide by organic processes must have involved dissociation of water to yield the necessary oxygen and loss of electrons from available Fe2+, a process used by modern deep-water bacteria that depends on the presence of nitrates. That can power the metabolism of inorganic carbon dissolved in water as, for instance, bicarbonate ions and water to yield cell-building carbohydrates: a form of autotrophy. There may have been other metabolic routes, such as reducing dissolved sulfate ions to sulfur, as suggested by the association of metal sulfides. If the sea floor was shallow enough to be lit CO2 and water may have been converted to carbohydrates by a form of photosynthesis that does not release oxygen, analogous to modern purple bacteria.

There may have been considerable biodiversity in the Nuvvuagittuk ecosystem. So despite its vast age – it may have been active only 300 Ma after the Earth formed, if the oldest date is verified – it has to be remembered that a great many earlier evolutionary steps, both inorganic and organic, must have been accomplished to have allowed these organisms to exist. The materials do not signify the origin of life, but life that was chemically extremely sophisticated: far more so than anything attempted so far in laboratories to figure out the tricks performed by natural inorganic systems. DNA and RNA alone are quite a challenge!

See also: Video by authors of the paper (YouTube) Diverse life forms may have evolved earlier than previously thought. ScienceDaily, 13

Conditions that may have underpinned the ‘Cambrian Explosion’

Geologists of my generation leaned that the earliest signs of abundant and diverse animal life were displayed by an extraordinary assemblage of fossils in a mudstone exposure high on a ridge in the Rocky Mountains of British Columbia. The Burgess Shale lagerstätte, or ‘site of exceptional preservation’, was discovered by Charles Walcott in 1909. It contained exquisite remains, some showing signs of soft tissue, of a great range of animals, many having never before been seen. Though dated at 509 Ma (Middle Cambrian) it was regarded for much of the 20th century as the sign of a sudden burgeoning from which all subsequent life had evolved: the Cambrian Explosion. Walcott only scratched the surface of its riches, its true wonders only being excavated and analysed later by Harry Whittington and his protégé Simon Conway Morris of Cambridge University. Their results were summarised and promoted in one of the great books on palaeontology and evolutionary biology, Wonderful Life (1989) by Steven Jay Gould.

Harbingers of animal profusion first appear around 635 Ma in the Late Neoproterozoic as the Ediacaran Fauna, with the oldest precursors turning up around a billion years ago in the Torridonian Sandstone Formation of northern Scotland. The evolutionary links between them and the Cambrian Explosion are yet to be documented, as creatures of the Ediacaran remain elusive in the earliest Phanerozoic rocks. As regards the conditions that promoted the explosion of animal faunas, the Burgess Shale is a blank canvas, for its riches were not preserved in situ, but had drifted onto deep, stagnant ocean floor to be preserved in oxygen-poor muds that enabled their intricate preservation. The animals could not have lived and evolved without abundant oxygen: what that environment was is not recorded by Walcott’s famous stratigraphic site.

Artistic impression of the Chengjian Biota

China, it has emerged, offers a major clue from around 40 lagerstätten in Chengjian County, Yunnan. They are not only older (518 Ma) than the Burgess Shale but contain 27 percent more faunal diversity: 17 phylums and more than 250 species. Since the discovery of the Chengjian Biota in the first decade of the 21st century palaeontologists have, understandably, been preoccupied by describing its riches in hundreds of scientific papers. The nature of the ecosystem has remained as obscure as that of the Burgess Shale, largely due to the exposed host rocks (laminated siltstones and mudstones) having been weathered. They are superficially similar to the Burgess Shale. In March 2022, 10 scientists working at laboratories in China, Canada, Switzerland and the UK published the results of their painstaking sedimentological investigation of a core dilled through through the entire fossiliferous sequence (Salih, F. and 9 others 2022. The Chengjiang Biota inhabited a deltaic environment. Nature Communications, v. 13, article 1569; DOI: 10.1038/s41467-022-29246-z).

Reconstruction of the near-shore deltaic environment in which the Chengjian Biota lived and evolved. Several rock types and the sedimentary processes that probably formed them shown in ‘cores’ (Credit: Salih et al. Figure 3)

The unweathered core displays a variety of tiny sedimentary structures. These include cross laminations formed by migrating ripples, occasional fine sandstones that include signs of burrowing, graded bedding formed by minor turbidity currents, hummocks formed by back and forth water flow, ripples formed by flow in a single direction and small channels. Unlike the Burgess Shale, the fine-grained Chengjian sediments seem to have been deposited in environments that were far from stagnant and deep. They most closely resemble the offshore parts of the delta of a predominantly muddy river, subject to occasional floods and storms and characterised by large and rapid accumulation of mud and silt by dense sediment-loaded river water flowing down a gently sloping seabed into clearer seawater. That the sediment supply was full of nutrients and oxygen is reflected by small organisms living in burrows. The high-quality preservation of fossils in some layers can be attributed to sudden influxes of freshwater into their marine habitat during storms, so that they were killed in place. Such a near-shore environment, full of nutrients and oxygen but subjected to repeated geochemical and physical stresses, can explain adaptive radiation and evolution at a fast pace. Clearly, that is by no means a full explanation of the Cambrian Explosion, but offers sufficient insight for research to proceed fruitfully.

See also: Modern Animal Life Could Have Origins in a Shallow, Nutrient-Rich Delta, SciTechDaily, 23 March 2022.

Signs of massive hydrocarbon burning at the end of the Triassic

One of the ‘Big Five’ mass extinctions occurred at the end of the Triassic Period (~201 Ma), whose magnitude matches that of the more famous end-Cretaceous (K-Pg) event. It roughly coincided with the beginning of break-up of the Pangaea supercontinent that was accompanied by a major episode of volcanism preserved in the Central Atlantic Magmatic Province (CAMP). Eastern North America, West Africa and northern South America reveal scattered patches of CAMP flood basalts, swarms of dykes and large intrusive sills. Like all mass extinctions, that at the Triassic-Jurassic boundary left a huge selection of vacant or depleted ecological niches ready for evolution to fill by later adaptive radiation of surviving organisms. Because it coincided with continental break-up and drift, unlike other such events, evolution proceeded in different ways on the various wandering land masses and in newly formed seas (see  an excellent animation of the formation and break-up of Pangaea – move the slider to 3 minutes for the start of break-up). The Jurassic was a period of explosive evolution among all groups of organisms. The most notable changes were among marine cephalopods, to give rise to a bewildering variety of ammonite species, and on land with the appearance and subsequent diversification of dinosaurs.

Pangaea at the end of the Triassic (top) and in Middle Cretaceous times (Credit: screen shots from animation by Christopher Scotese)

Many scientists have ascribed the origin of these events to the CAMP magmatic activity and the release of huge amounts of methane to trigger rapid global warming. In October 2021 one group focused on a special role for the high percentages of magma that never reached the surface and formed huge intrusions that spread laterally in thick sedimentary sequences to ‘crack’ hydrocarbons to their simplest form, CH4 or methane. A sedimentary origin of the methane, rather than its escape from the mantle, is indicated by the carbon-isotope ‘signature’ of sediments deposited shortly after the Tr-J event. The lighter isotope 12C rose significantly relative to 13C, suggesting an organic source – photosynthesis selectively takes up the lighter isotope.

By examining the element mercury (Hg) in deep ocean sediments from a Tr-J sedimentary section now exposed in Japan, scientists from China, the US and Norway have added detail to the methane-release hypothesis (Shen, J et al. 2022. Mercury evidence for combustion of organic-rich sediments during the end-Triassic crisis. Nature Communications, v. 13, article 1307; DOI:10.1038/s41467-022-28891-8). The relative proportions of Hg isotopes strongly suggest that the mercury had been released, as was the methane, from organic-rich sediments rather than from the CAMP magmas (i.e. ultimately from the mantle) through gasification and then burning at the surface.

The hypothesis is enlivened by a separate study (Fox C.P. et al. 2022. Flame out! End-Triassic mass extinction polycyclic aromatic hydrocarbons reflect more than just fire. Earth and Planetary Science Letters, v. 584, article 117418; DOI: 10.1016/j.epsl.2022.117418) that sees magmatic heating as being not so important. Calum Fox and colleagues at Curtin University, Western Australia analysed sediments from a Triassic-Jurassic sedimentary sequence near the Severn Bridge in SW England, focusing on polycyclic hydrocarbons in them. Their results show little sign of the kinds of organic chemical remnants of modern wildfires. Instead they suggest a greater contribution from soil erosion by acid rain that increased input of plant debris to a late Triassic marine basin

See also: How a major volcanic eruption paved the way for the rise of the dinosaurs Eureka Alert 23 March 2022;  Soil erosion and wildfire: another nail in coffin for Triassic era. Science Daily, 21 March 2022

End-Cretaceous mass extinction occurred in northern spring

This post’s title seems beyond belief for an event that occurred 66 million years ago: how can geologists possibly say that with any conviction? The claim is based on fossil fishes found in the Late Cretaceous Hell Creek Formation of North Dakota (see: A bad day at the end of the Cretaceous. April, 2019), described in a paper published on 1 April 2019. The horizon that displays all the classic evidence for an impact origin for the K-Pg extinction is a freshwater sediment laid down by a surge into a river system: the upstream result of the mega-tsunami driven by the Chicxulub impact in the Gulf of Mexico. Amongst much else it contains intact marine ammonites – the last of their kind – and freshwater paddlefish and sturgeon. The fishes are preserved exquisitely, with no sign of scavenging. Parts of their gills are clogged with microscopic spherules made of impact glass. They are pretty good ‘smoking guns’ for an impact, and are accompanied by dinosaur remains – an egg with an embryo, hatchlings and even a piece of skin.

A group of scientists from the Netherlands, Sweden, Belgium and the UK examined thin sections of the fishes’ bones (During, M.A.D. et al. 2022. The Mesozoic terminated in boreal springNature online publication, 23 February 2022; DOI: 10.1038/s41586-022-04446-1). These revealed growth layers that show lines of arrested growth (LAGs) separated by thicker layers. Such LAGs in modern paddlefish and sturgeon bones may indicate conditions of low food availability in winter, most growth being during warmer times of year. Each bone that was examined has only a thin outer zone of accelerated growth following its last LAG. So it seems that each specimen died in the Northern Hemisphere spring. This was confirmed by variations within the cyclic zonation of the relative proportions of carbon isotopes 13C and 12C, expressed as δ13C. In the LAGs δ13C is lower than in the thicker zones, which is consistent with decreased prey availability in winter, but see below.

Thin sections of fish bones from the K-Pg boundary layer in the Hell Creek Formation, showing lines of arrested growth marked by red arrowheads. The outermost (top) LAGs are succeeded by only a thin zone of accelerated growth during their last weeks of the fishes’ lives (credit: During et al., Fig. 2)

The paper by During et al. follows one with very similar content from the same deposit that was published about 12 weeks earlier (DePalma, R.A., et al. 2021. Seasonal calibration of the end-cretaceous Chicxulub impact event. Nature Science Reports, v. 11, 23704; DOI: 10.1038/s41598-021-03232-9). Yet During et al. do not refer to it, despite acknowledging DePalma’s guidance in the field and his granting access to his team’s specimens: maybe due to poor communications … or maybe not. DePalma et al. note thatmodern sturgeons are able to spend winters in the sea, which may also explain the low δ13C in the LAGs, as well as decreased prey availability does. They also examined damage by leaf-mining insects in fossil leaves at the site, which supports the springtime extinction hypothesis. Another study in DePalma et al. is the size range of newly hatched fish of three different Families that are founds as fossils in the K-Pg deposit. By comparing them with the growth histories of closely-related modern hatchlings they conclude that perhaps late spring to early summer is implied. Whatever, both papers go on to discuss the implications of their basic conclusions. Spring is a particularly sensitive time for the life cycles of many organisms; i.e. annual reproduction and newborns’ early growth. But some groups of egg-laying animals, such as perhaps dinosaurs, require longer incubation periods than do others, e.g. birds, and may be more vulnerable to rapid environmental change. That may explain the demise of the dinosaurs while their close avian relatives, or at least some of them, survived.  Yet the season in the Southern Hemisphere when the Chicxulub impact occurred would have been autumn. That may go some way towards explaining evidence that ecological recovery from mass extinction in the southern continents seems to have been faster. Almost certainly, the impact would have induced a double climatic whammy: warming in its immediate aftermath followed by global cooling plus a shutdown of photosynthesis as dust clouds enveloped the planet. Then there is the issue of contamination by potentially toxic compounds raised by Chicxulub. The K-Pg boundary seems likely to run and run as a geoscientific story more than four decades since it was first proposed.

See also: Sample, I. 2022. Springtime asteroid ramped up extinction rates, say scientists. The Guardian, 23 September 2022.

A cometary air-burst over South America 12 thousand years ago

Earth-logs has previously covered quite a few hypotheses involving catastrophic astronomical events of the past, often returning to them as new data and ideas emerge. They range from giant impacts, exemplified in the mass extinction at the K-Pg boundary to smaller-scale events that may have coincided with important changes in climate, such as the sudden onset of the Younger Dryas, and a few that have been suggested as agencies affecting local human populations such as the demise of Sodom by a cosmogenic air-burst. Some of the papers that spurred the Earth-pages posts have been widely regarded in the geoscience community. Yet there have been others that many have doubted, and even condemned. For instance, data used by the consortium that suggested an extraterrestrial event triggered the frigid millennium of the Younger Dryas (YD) have been seriously and widely questioned. A sizeable number of the team that were under close scrutiny in 2008 joined others in 2019 to back the YD air-burst hypothesis again, using similarly ‘persuasive’ data from Chile. Members of the original consortium of academics also contributed to the widely disputed notion of a cosmic air-burst having destroyed a Bronze Age urban centre in Jordan that may, or may not, have been the site of the Biblical Sodom. Again, they cited almost the ‘full monty’ of data for high-energy astronomical events, but again no crater or substantial melt glass, apart from tiny spherules. Now another paper on much the same theme, but none of whose authors contributed to those based on possibly ‘dodgy’ data, has appeared in Geology (Schultz, P.H. et al. 2021. Widespread glasses generated by cometary fireballs during the Late Pleistocene in the Atacama Desert, Chile. Geology, published online November 2, 2021; doi: 10.1130/G49426.1).

Peter Schultz of Brown University, USA and colleagues from the US and Chile make no dramatic claims for death and destruction or climate destabilisation, and simply report a fascinating discovery. In 2012 one of the authors, Nicolas Blanco of the Universidad Santo Tomás in Santiago, Chile, found slabs made of glassy material up to half a metre across. They occurred in several 1 to 3 km2 patches over a wide area of the Atacama Desert. Resting on Pleistocene glacio-fluvial sediments, they had been exposed by wind erosion of active sand dunes. The glass is dark green to brown and had been folded while still molten. For the glass slabs to be volcanic bombs presupposes a nearby volcano, but although Chile does have volcanoes none of the active vents are close enough to have flung such large lumps of lava into the glass-strewn area. The glassy material also contains traces of vegetation, and varies a great deal in colour (brown to green). Its bulk chemical composition suggests melting of a wide variety of surface materials: quite unlike volcanic glasses.

Chilean glass occurrence: panorama of large glass fragments in the Atacama Desert; a specimen of the glass; thin section of glass showing bubbles and dusty particles (Credit: Schultz et al. 2021; Figs 1B, 2D and 2C)

Microscopic examination of thin sections of the glasses also reveals nothing resembling lava, except for gas bubbles. The slabs are full of exotic fragments, some of which closely resemble mineral assemblages found in meteorites, including nickel-rich sulfides embedded in ultramafic material. Others are calcium-, aluminium- and titanium-rich inclusions, such as corundum (Al2O3) and perovskite (CaTiO3), thought to have originated as very-high temperature condensates from the pre-solar nebula: like the celebrated ‘white inclusions’ in the Allende meteorite. Some minute grains resemble dust particles recovered by the NASA Stardust mission to Comet 81P/Wild-2 which returned samples to Earth in 2006. Zircon grains in the glasses, presumed to be locally derived, have been decomposed to zirconium oxide (baddeleyite), suggesting melting temperatures greater than 1670°C: far above the highest temperature found in lavas (~1200°C). Interestingly, the green-yellow silica glass strewn over the Sahara Desert around the southern Egypt-Libya border also contains baddeleyite and cometary dusts, together with anomalously high platinum-group elements and nanodiamonds that are not reported from the Chilean glass. Much prized by the elite of pharaonic Egypt and earlier makers of stone tools, the Saharan glass is ascribed to shock heating of the desert surface by a cometary nucleus that exploded over the Sahara. Unsurprisingly, Schultz et al. come to the same conclusion.

Any object entering the Earth’s atmosphere does so at speeds in excess of our planet’s escape velocity (11.2 km s-1). Not only does that result in heating by friction with the air, but much of the kinetic energy of hypersonic entry goes into compressing air through shock waves, especially with objects larger than a few tens of metres. Such adiabatic compression can produce temperatures >>10 thousand °C. Hence the ‘fireballs’ associated with large meteorites. With very large air-bursts the flash of radiant energy would be sufficient to completely melt surface materials in microseconds, though rugged topography could protect areas shadowed from the air-burst by mountains, perhaps explaining the patchy nature of the glass occurrences.  (Note: the aforementioned papers on the YD and Sodom ‘air-bursts’ do not mention large glass fragments, whereas some surface melting would be expected). Some of the Chilean glass contains carbonised remnants of vegetation. Radiocarbon dating of four samples show that the glass formed at some time between 16.3 to 12.1 ka. Yes, that does include the age of the start of the YD (12.9 ka) and human migrants had established themselves in northern Chile and coastal Peru after 14.2 ka. Yet the authors, perhaps wisely, do no more than mention the coincidence, as well as that with the disappearance of South American Pleistocene megafaunas – more severe than on any other continent. With a very distinctive product, probably spanning a far larger area of South America, and attractive to humans as an ornament or a resource for sharp tools, expect follow-up articles in the future.

See also: http://www.sci-news.com/space/atacama-desert-comet-10247.html, Science News, 8 November 2021; Vast patches of glassy rock in Chilean desert likely created by ancient exploding comet, Eureka Alert, 2 November 2021.

Apocalypse Soon: Will current global warming trigger a mass extinction?

Since the start of 2020 I doubt there has been much field research. But such a vast amount of data has been amassed over the years that there must be opportunities to keep the academic pot boiling. One way is to look for new correlations between different kinds of data. For instance matching the decades-old time series of extinctions with those of other parameters that have changed over geological time. At a time of growing concern about anthropogenic climate change a group based at the State Key Laboratory of Biogeology and Environmental Geology, at China University of Geosciences, Wuhan have checked the extinction rates of marine fossils over the last 450 Ma against variations in sea-surface temperature (Song, H. et al 2021. Thresholds of temperature change for mass extinctions. Nature Communications, v. 12, Article number 4694; DOI: 0.1038/s41467-021-25019-2).

Extinction data are usually presented in time ‘bins’ based on the number of disappearances of fossil genera in one or a number of geological Stages – the finest divisions of the stratigraphic column. The growing data set for sea-surface temperatures derived using oxygen isotopes from marine fossil shells is more continuous, being derived from many different layers of suitable sedimentary rock within a Stage. Clearly, the two kinds of data have to be expressed in a similar way to check for correlations. Haijun Song and co-workers converted both the extinction and temperature time series to 45 time ‘bins’, each around 10 Ma long. They express the binned climatic data in two ways: as the largest temperature change (°C) and the highest rate of temperature change (°C Ma-1) within each bin. That is, they expressed to some extent the greater continuity of seawater temperature data as well as matching them to those for extinctions.

Changes since the end of the Ordovician: red = extinction rate in time bins; green = the greatest magnitude of change in temperature in each bin; blue- the greatest rate of temperature change in each bin. Grey bars show mass extinctions (Credit: Song et al., Fig 1)

There are good correlations between the climatic and extinction data, particularly for mass extinctions. Bearing in mind that mass extinctions take place far more rapidly than can be expressed with 10 Ma time bins, the authors were concerned that bias could creep into the binned extinction data. They were able to discount this by examining both data sets in finer detail at the times of the ‘Big 5’ extinctions. Earlier research had identified warming episodes around the times of each mass extinction, often implicating greenhouse-gas emissions from Large Igneous Provinces. Yet there are other factors that may have influenced the 7 ‘lesser’ mass extinctions in the fossil record. The authors are sufficiently confident in the correlations they have revealed to suggest thresholds that seem to have launched major mass extinctions: greater than 5.2 °C and 10 °C Ma-1 for magnitudes and rates of sea-surface temperature change, respectively.

In the context of the modern climate, the data analysis predicts that a rise of 5.2 °C above the preindustrial mean global temperature spells extinctions of ‘Big Five’ magnitude. The rate of temperature increase since 1880 – 0.08 ° per decade – is hugely faster than that expressed by the data that span the last 450 Ma. This is more alarming than the stark Sixth Report of the Intergovernmental Panel on Climate Change IPCC released on 9 August 2021.

Update: Can a supernova affect the Earth System?

Earth-pages asked this question in August 2020 because it had been suggested that at least one mass extinction – the protracted faunal decline during the Late Devonian – may provide evidence that supernovas can have deadly influence. The authors of the paper that I discussed proposed mass spectrometric analysis of isotopes, such as 146Sm, 235U and  244Pu  in sediments deposited in an extinction event to test the hypothesis. In the 14 May issue of Science a multinational group of geochemists and physicists, led by Anton Wallner of the Australian National University, report detection of alien isotopes in roughly 10 million-year-old sediments sampled from the Pacific Ocean floor (Wallner, A and 12 others 2021. 60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae. Science, v. 372, p. 742-745; DOI: 10.1126/science.aax3972).

Many of the chemical elements whose atomic masses are greater than 56 form by a thermonuclear fusion process known as rapid neutron capture – termed the ‘r-process’ by physicists. This requires such high energy that the likely heavy-element ‘nurseries must be events such as supernovas and/or mergers of neutron stars. The iron and plutonium isotopes  detected at very low concentrations are radioactive, with half-lives of 2.6 Ma for 60Fe and 80.6 Ma for 244Pu. That makes it impossible for them to be terrestrial in origin because, over the lifetime of the Earth, they would decayed away completely. They must be from recent, alien sources either in our galaxy or one of the nearby galaxies. In fact two ‘doses’ were involved. The authors make no comment on any relationship with marine or continental extinctions at that time in the Miocene Epoch

Multicelled fossils from the 1 Ga old Torridonian of Scotland

Beinn Alligin and Loch Torridon, Northwest Highlands of Scotland. The hills are formed by Torridonian terrestrial sediments (credit: Stefan Krause, Wikimedia Commons)

Palaeobiologists interested in the origin of animals have generally focussed on sedimentary rocks from southern China: specifically those of the 635 to 550 Ma Doushantuo Formation. Phosphorus-rich nodules in those marine sediments have yielded tiny spheroids whose structure suggests that they are fossil embryos of some unspecified eukaryote. The Doushantuo Formation lies on top of rocks associated with the Marinoan episode of global glaciation during the Neoproterozoic; a feature which suggested that the evolutionary leap from single- to multi-celled eukaryotes was associated with environmental changes associated with Snowball Earth events. In a forthcoming issue of Current Biology that view will be challenged and the origin of multicellular life pushed back to around 1 billion years ago (Strother, P.K. et al. 2021. A possible billion-year-old holozoan with differentiated multicellularity. Current Biology, v. 31, p. 1-8; DOI: 10.1016/j.cub.2021.03.051). Spherical fossils of that age have been teased out of phosphatic nodules deposited in lacustrine sediments from the lower part of the Mesoproterozoic Torridonian Group of the Northwest Highlands of Scotland.

The internal structure of the fossils has been preserved in exquisite detail. Not only are cells packed together in their interiors, but some reveal an outer layer of larger sausage-shaped cells. So, cell differentiation had taken place in the original organisms, whereas such features are not visible in the Doushantuo ‘embryos’. A few of the central cells show dark, organic spots that may be remains of theirnucleii. Whatever these multicellular spheres may have developed into, the morphology of the Torridonian fossils is consistent with a transition from single-celled holozoans to the dominant metazoans of the Phanerozoic; i.e. the stem of later animals. The younger, Chinese fossils that are reputed to be embryos cannot be distinguished from multicellular algae (see: Excitement over early animals dampened, January 2012)

Photomicrograph of Bicellum brazieiri: scale bar = 10μm; arrows point to dark spots that may be cell nuclei (credit: Charles Wellman, Sheffield University)

Interestingly, the Torridonian Group is exclusively terrestrial in origin, being dominated by sediments deposited in the alluvial plains of huge braided streams that eventually buried a rugged landscape eroded from Archaean high-grade metamorphic rocks. Thus the environment would have been continually in contact with the atmosphere and thus oxygen that is vital for eukaryote life forms. The age of the fossils also rings a bell: a molecular clock based on the genomics of all groups of animals alive today hints at around 900-1000 Ma for the emergence of the basic body plan. Because its host rocks are about that age, could Bicellum brazier be the Common Ancestor of all modern animals? That would be a nice tribute to the second author, Martin Brazier (deceased) of Oxford University, who sought signs of the most ancient life for much of his career.

See also:Billion-year-old fossil reveals missing link in the evolution of animals (Press release, Sheffield University; 29 April 2021)