Family links among the Neanderthals of Siberia

Caves used by the Neanderthals of southern Siberia: A – location map; B – Chagyrskaya Cave; C – Okladnikov Cave. (Credit: adapted from Skov et al.; Extended Data Fig. 1)

The early focus on Neanderthals was on remains found in Western Europe from the 19th century onwards. That has shifted in recent years to southern Siberia in the foothills of the Altai mountains, despite the fossils’ fragmentary nature: a few teeth and bits of mandible. The Denisova Cave became famous not just because it contained the easternmost evidence of Neanderthal occupation but through the genetic analysis of a tiny finger-tip bone. It proved not to be from a Neanderthal but a distinctly different hominin species, dubbed Denisovan (see: Other rich hominin pickings; May 2010). What Denisovans looked like remains unknown but genetic traces of them are rife among living humans of the western Pacific islands and Australia, whose ancestors interbred with Denisovans, presumably in East Asia. Modern people indigenous to Europe and the Middle East have Neanderthal genes in their genomes. Other bone fragments from Denisova Cave also yielded Neanderthal genomes, and the cave sediments yielded traces of both groups (see: Detecting the presence of hominins in ancient soil samples; April 2017). Then in 2018 DNA extracted from a limb bone from the cave clearly showed that it was from a female teenager who had had a Neanderthal mother and a Denisovan father (see: Neanderthal Mum meets Denisovan Dad; August 2018). These astonishing and unexpected finds spurred further excavations and genetic analysis in other caves within 100 km of Denisova Cave. This was largely led by current and former co-workers of Svanti Pääbo, of the Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany: Pääbo was awarded the 2022 Nobel Prize in Physiology or Medicine for his coordination of research and discoveries concerning ancient human genomes. Their enormous field and laboratory efforts have paid astonishingly valuable dividends (Skov, L. and 34 others 2022. Genetic insights into the social organization of Neanderthals. Nature v. 610, p. 519–525; DOI: 10.1038/s41586-022-05283-y).

To the previously analysed 18 Neanderthal genomes from 14 archaeological sites across Eurasia (including Denisova Cave) Skov et al. have added 13 more from just two sites in Siberia (the Chagyrskaya and Okladnikov caves). Each site overlooks valleys along which game still migrates, so they may have been seasonal hunting camps rather than permanent dwellings: they are littered with bison and horse bones. Tools in the two 59-51 ka old human occupation levels are different from those at the older (130 to 91 Ka) Denisova Cave about 100 km to the east. As at the much older site, human fossils include several teeth and fragments of bones from jaws, hands, limbs and vertebrae. The detailed genomes recovered from 17 finds shows them to be from 14 individuals (12 from Chagyrskaya, 2 from Okladnikov).

Chagyrskaya yielded evidence for 5 females (3 adults and 2 children) and 7 males (3 children and 4 adults). One female estimated to have lost a premolar tooth when a teenager was the daughter of a Chagyrskaya adult male. He, in turn, was brother or father to another male, so the girl seems to have had an uncle as well. Another male and female proved to be second-degree relations (includes uncles, aunts, nephews, nieces, grandparents, grandchildren, half-siblings, and double cousins). The two people from Okladnikov were an adult female and an unrelated male child. The boy was not related to the Chagyrskaya group, but the woman was, her former presence at that cave lingering in its cave-sediment DNA. None of the newly discovered individuals were closely related to six of the seven much older Denisova Cave Neanderthals, but the Okladnikov boy had similar mtDNA to one individual from Denisova.

Further information about the Chagyrskaya group came from comparison of DNA in Y-chromosomes and mitochondria. The father of the teenage girl had two types of mtDNA – the unusual characteristic of heteroplasmy – that he shared with two other males. This suggests that three of the males shared the same maternal lineage – not necessarily a mother – and also indicates that they lived at roughly the same time. The mtDNA recovered from all Chagyrskaya individuals was much more varied than was their Y-chromosome DNA (passed only down male lineage). One way of explaining that would be females from different Neanderthal communities having migrated into the Chagyrskaya group and mated with its males, who largely remained in the group: a ‘tradition’ known as patrilocality, which is practised in traditional Hindu communities, for instance.

So, what has emerged is clear evidence for a closely related community of Neanderthals at Chagyrskaya, although it cannot be shown that all were present there at the same time, apart from the five who show first- or second-degree relatedness or mitochondrial heteroplasmy. Those represented only by individual teeth didn’t necessarily die there: adult teeth can be lost through trauma and deciduous teeth fall out naturally. There was also some individual physical connection between the two caves: The Okladnikov woman’s DNA being in the sediment at Chagyrskaya. Looking for DNA similarities more widely, it appears that all individuals at Chagyrskaya may have had some ancestral connection with Croatian Neanderthals, as did the previously mentioned mother of the Denisovan-Neanderthal hybrid girl. Four of the Chagyrskaya individuals can also be linked genetically to Neanderthals from Spain, more so than to much closer individuals found in the Caucasus Mountains. So, by around 59-51 ka the results of a wave of eastward migration of Neanderthals had reached southern Siberia. Yet the apparent matrilineal relatedness of the Okladnikov boy to the much older Neanderthals of Denisova Cave suggests that the earlier group continued to exist.

The new results are just as fascinating as the 2021 discovery that ancient DNA from Neolithic tomb burials in the Cotswolds of SW England suggests that the individual skeletons represent five continuous generations of one extended family. The difference is that they were farmers tied to the locality, whereas the Siberian Neanderthals were probably hunter gatherers with a very wide geographic range.  Laurits Skov and his colleagues have analysed less than one-quarter of the Neanderthal remains already discovered in Chagyrskaya and Okladnikov caves and only a third of the cave deposits have been excavated. Extracting and analysing ancient DNA is now far quicker, more detailed and cheaper than it was in 2010 when news of the first Neanderthal genome broke. So more Neanderthal surprises may yet come from Siberia. Progress on the genetics of their anatomically-modern contemporaries in NE Asia has not been so swift.

See also:  Callaway, E. 2022. First known Neanderthal family discovered in Siberian cave.  Nature online 19 October 2022.

Early human migrations in southern Africa

Comparing the DNA profiles of living people who are indigenous to different parts of the world has achieved a lot as regards tracing the migrations of their ancestors and amalgamations between and separations from different genetic groups along the way. Most such analyses have centred on alleles in DNA from mitochondria (maternal) and Y chromosomes (paternal), and depend on the assumption that rates of mutation (specifically those that have neither negative nor positive outcomes) in both remain constant over tens of thousand years and genetic intermixing through reproduction. Both provide plausible hypotheses of where migrations began, the approximate route that they took and the timing of both departures from and arrival at different locations en route. Most studies have focused on the ‘Out of Africa’ migration, which began, according to the latest data, around 80 ka ago. Arrival times at various locations differ considerably, from around 60 ka for the indigenous populations of Australia and New Guinea, roughly 40 ka for Europe and ~12 ka for the Americas. Yet an often overlooked factor is that not all migrating groups have descendants that are alive today. For instance, remains of anatomically modern humans (AMH)have been found in sediments in the Levant as old as 177 ka (see: Earliest departure of modern humans from Africa, January 2018), and between 170 to 210 ka in southern Greece (See: Out of Africa: The earliest modern human to leave). Neither have yielded ancient DNA, yet nor are their arrival times compatible with the ‘route mapping’ provided by genetic studies of living people. Such groups became extinct and left no traceable descendants, and there were probably many more awaiting discovery. Maybe these mysteries will be penetrated by DNA from the ancient bones, should that prove possible.

The recorded history of AMH within Africa began around 286 to 315 ka in Morocco (see: Origin of anatomically modern humans, June 2017) and their evolutionary development may have spanned much of the continent, judging by previously discovered fossils in Ethiopia and South Africa that are older than 200 ka. Again, ancient DNA has not been extracted from the oldest fossils; nor is that likely to be possible because the double helix breaks down quickly in hot and humid climates. Genetic data from living Africans are growing quickly. An additional 198 African mtDNA genomes reported recently have pushed up the total available for analysis, the bulk of them being from eastern and southern Africa (Chan, E.K.F. and 11 others 2019. Human origins in a southern African palaeo-wetland and first migrations. Nature, v. 575, p. 185-189; DOI: 10.1038/s41586-019-1714-1). The study focuses on data from the KhoeSan ethnic group, restricted to areas south of the Zambezi River, who speak a language with distinctive  click consonants. Some KhoeSan still practice a hunter-gatherer lifestyle. Previous genetic studies showed the KhoeSan to differ markedly from other inhabitants of southern Africa, and they are widely regarded as having inhabited the area for far longer than any other groups. A sign of this emerges from their mtDNA in a genetic lineage signified as L0. Comparing KhoeSan mtDNA with the wider genetic database allowed the researchers to plot a ‘family tree’. Measures of the degree of difference between samples push back the origin of L0 and the KhoeSan themselves to roughly 200 ka.

The Okavango Delta today during the wet season (Credit: Wikimedia Commons)

It turns out that the LO lineage has several variants, whose geographic distributions allow the approximate place of origin for the lineage and directions of later migration from it to be mapped. It seems that LO was originally indigenous to the modern Okavango Delta and Makgadikgadi salt flats of Botswana. People carrying the original (L0k) variant are estimated to have remained in the broad area for about 70 thousand years. During that time it was all lush, low-lying wetland around a huge, now vanished lake. The hydrology of the area was dramatically split by regional tectonic activity at around 60 ka. The lake simply evaporated to form the salt pan of the Makgadikgadi, leaving only the seasonal Okavango Delta as a destination for flood water. People carrying Lok stayed in the original homeland whereas other shifted. Migration routes to the northeast and towards the southwest and south are crudely mapped by the distribution of the other L0 variants among modern populations. They followed ‘green corridors’ between 130 and 110 ka, the collapse of the ecosystem leaving a small group of the founding population isolated from its descendants.

The paper claims that the former Botswana wetlands were the cradle of the first modern humans. Perhaps in southern Africa, but other, older AMH remains found far off and perhaps undiscovered elsewhere are more likely. But that can only be reconciled with the KhoeSan study by ancient DNA from fossils. Criticism of the sweeping claims in the paper has already been voiced, on these grounds and the study’s lack of data on paternal DNA or whole genomes from the sampled population.

See also: Gibbons, A. 2019. Experts question study claiming to pinpoint birthplace of all humans. Science (online); DOI: 10.1126/science.aba0155