Origin of animals at a time of chaotic oxygen levels

Every organism that you can easily see is a eukaryote, the vast majority of which depend on the availability of oxygen molecules. The range of genetic variation in a wide variety of eukaryotes suggests, using a molecular ‘clock’, that the first of them arose between 2000 to 1000 Ma ago. It possibly originated as a symbiotic assemblage of earlier prokaryote cells ‘bagged-up’ within a single cell wall: Lynn Margulis’s hypothesis of endosymbiosis. It had to have happened after the Great Oxygenation Event (GOE 2.4 to 2.2 Ga), before which free oxygen was present in the seas and atmosphere only at vanishingly small concentrations. Various single-celled fossil possibilities have been suggested to be the oldest members of the Eukarya but are not especially prepossessing, except for one bizarre assemblage in Gabon. The first inescapable sign that eukaryotes were around is the appearance of distinctive organic biomarkers in sediments about 720 Ma old. The Neoproterozoic is famous for its Snowball Earth episodes and the associated multiplicity of large though primitive animals during the Ediacaran Period (see: The rise of the eukaryotes; December 2017).

The records of carbon- and sulfur isotopes in Neo- and Mesoproterozoic sedimentary rocks are more or less flat lines after a mighty hiccup in the carbon and sulfur cycles that followed the GOE and the earliest recorded major glaciation of the Earth. The time between 2.0 and 1.0 Ga has been dubbed ‘the Boring Billion’. At about 900 Ma, both records run riot. Sulfur isotopes in sediments reveal the variations of sulfides and sulfates on the seafloor, which signify reducing and oxidising conditions respectively.  The δ13C record charts the burial of organic carbon and its release from marine sediments related to reducing and oxidising conditions in deep water. There were four major ‘excursions’ of δ13C during the Neoproterozoic, which became increasingly extreme. From constant anoxic, reducing conditions throughout the Boring Billion the Late Neoproterozoic ocean-floor experienced repeated cycles of low and high oxygenation reflected in sulfide and sulfate precipitation and by fluctuations in trace elements whose precipitation depends on redox conditions. By the end of the Cambrian, when marine animals were burgeoning, deep-water oxic-anoxic cycles had been smoothed out, though throughout the Phanerozoic eon anoxic events crop up from time to time.

Atmospheric levels of free oxygen relative to that today (scale is logarithmic) computed using combined carbon- and sulfur isotope records from marine sediments since 1500 Ma ago. The black line is the mean of 5,000 model runs, the grey area represents ±1 standard deviations. The pale blue area represents previous ‘guesstimates’. Vertical yellow bars are the three Snowball Earth events of the Late Neoproterozoic (Sturtian, Marinoan and Gaskiers). (Credit: Krause et al., Fig 1a)

The Late Neoproterozoic redox cycles suggest that oxygen levels in the oceans may have fluctuated too. But there are few reliable proxies for free oxygen. Until recently, individual proxies could only suggest broad, stepwise changes in the availability of oxygen: around 0.1% of modern abundance after the GOE until about 800 Ma; a steady rise to about 10% during the Late Neoproterozoic; a sharp rise to an average of roughly 80% at during the Silurian attributed to increased photosynthesis by land plants. But over the last few decades geochemists have devised a new approach based on variations on carbon and sulfur isotope data from which powerful software modelling can make plausible inferences about varying oxygen levels. Results from the latest version have just been published (Krause, A.J. et al. 2022. Extreme variability in atmospheric oxygen levels in the late Precambrian. Science Advances, v. 8, article 8191; DOI: 10.1126/sciadv.abm8191).

Alexander Krause of Leeds University, UK, and colleagues from University College London, the University of Exeter, UK and the Univerisité Claude Bernard, Lyon, France show that atmospheric oxygen oscillated between ~1 and 50 % of modern levels during the critical 740 to 540 Ma period for the origin and initial diversification of animals. Each major glaciation was associated with a rapid decline, whereas oxygen levels rebounded during the largely ice-free episodes. By the end of the Cambrian Period (485 Ma), by which time the majority of animal phyla had emerged, there appear to have been six such extreme cycles.

Entirely dependent on oxygen for their metabolism, the early animals faced periodic life-threatening stresses. In terms of oxygen availability the fluctuations are almost two orders of magnitude greater than those that animal life faced through most of the Phanerozoic. Able to thrive and diversify during the peaks, most animals of those times faced annihilation as O2 levels plummeted. These would have been periods when natural selection was at its most ruthless in the history of metazoan life on Earth. Its survival repeatedly faced termination, later mass extinctions being only partial threats. Each of those Phanerozoic events was followed by massive diversification and re-occupation of abandoned and new ecological niches. So too those Neoproterozoic organism that survived each massive environmental threat may have undergone adaptive radiation involving extreme changes in their form and function. The Ediacaran fauna was one that teemed on the sea floor, but with oxygen able to seep into the subsurface other faunas may have been evolving there exploiting dead organic matter. The only signs of that wholly new ecosystem are the burrows that first appear in the earliest Cambrian rocks. Evolution there would have ben rife but only expressed by those phyla that left it during the Cambrian Explosion.

There is a clear, empirical link between redox shifts and very large-scale glacial and deglaciation events. Seeking a cause for the dramatic cycles of climate, oxygen and life is not easy. The main drivers of the greenhouse effect COand methane had to have been involved, i.e. the global carbon cycle. But what triggered the instability after the ‘Boring Billion’? The modelled oxygen record first shows a sudden rise to above 10% of modern levels at about 900 Ma, with a short-lived tenfold decline at 800 Ma. Could the onset have had something to do with a hidden major development in the biosphere: extinction of prokaryote methane generators; explosion of reef-building and oxygen-generating stromatolites? How about a tectonic driver, such as the break-up of the Rodinia supercontinent? Then there are large extraterrestrial events … Maybe the details provided by Krause et al. will spur others to imaginative solutions. See also: How fluctuating oxygen levels may have accelerated animal evolution. Science Daily, 14 October 2022

Signs of Milankovich Effect during Snowball Earth episodes

The idea that the Earth was like a giant snowball during the Neoproterozoic Era arose from the discovery of rocks of that age that could only have formed as a result of glaciation. However, unlike the Pleistocene ice ages, evidence for these much older glacial conditions occurs on all continents. In some locations remanent magnetism in sedimentary rocks of that age is almost horizontal; i.e. they had been deposited at low magnetic latitudes, equivalent to the tropics of the present day. Frigid as it then was, the Earth still received solar heating and magmatic activity would have been slowly adding CO2 to the atmosphere so that less heat escaped – a greenhouse effect must have been functioning. Moreover, an iced-over world would not have been supporting much photosynthetic life to draw down the greenhouse gas into solid carbohydrates and carbonates to be buried on the ocean floor. As far as we know the Solar System’s geometry during the Neoproterozoic was much as it is today. So changes in the gravitational fields induced by the orbiting Giant Planets would have been affecting the shape (eccentricity) of Earth’s orbit, the tilt (obliquity) of its rotational axis and the precession (wobble) of its rotation as they do at present through the Milankovich effect. These astronomical forcings vary the amount of solar energy reaching the Earth’s surface. It has been suggested that a Snowball Earth’s climate system would have been just as sensitive to astronomical forcing as it has been during the last 2 million years or more. Proof of that hypothesis has recently been achieved, at least for one of the Snowball events (Mitchell, R.N. and 8 others 2021. Orbital forcing of ice sheets during snowball Earth. Nature Communications, v. 12, article 4187; DOI: 10.1038/s41467-021-24439-4).

Another of the enigmas of the Neoproterozoic is that after and absence of more than a billion years banded iron formations (see: Banded iron formations (BIFs) reviewed, December 2017) began to form again. BIFs are part of the suite of sedimentary rocks that characterise Snowball Earth events, often alternating with glaciogenic sediments. Throughout each cold cycle – the Sturtian (717 to 663 Ma) and Marinoan (650 to 632 Ma) glacial periods – conditions of sediment deposition varied a great deal from place to place and over time. Some sort of cyclicity is hinted at, but the pace of alternations has proved impossible to check, partly because the dominant rocks (glacial conglomerates or diamictites) show little stratification and others that are bedded (various non-glacial sandstones) vary from place to place and give no sign of rates of deposition, having been deposited under high-energy conditions. BIFs, on the other hand are made up of enormous numbers of parallel layers on scales from millimetres to centimetres. Bundles of bands can be traced over large areas, and they may represent repeated cycles of deposition.

Typical banded iron formation

How BIFs formed is crucial. They were precipitated from water rich in dissolved iron in its reduced Fe2+ (ferrous) form, which originated from sea-floor hydrothermal vents. Precipitation occurred when the amount of oxygen in the water increased the chance of electrons being removed from iron ions to transform them from ferrous to ferric (Fe3+). Their combination with oxygen yields insoluble iron oxides. Cyclical changes in the availability of oxygen and the balance between reducing and oxidising conditions result in the banding. In fact several rhythms of alternation are witnessed by repeated packages at deci-, centi- and millimetre scales within each BIF deposit. Overall the packages suggest a constant rate of deposition: a ‘must-have’ for precise time-analysis of the cycles. BIFs contain both weakly magnetic hematite (Fe2O3) and strongly magnetic magnetite (Fe3O4), their ratio depending on varying geochemical conditions during deposition. Ross Mitchell of Curtin University, Western Australia and his Chinese, Australian and Dutch colleagues measured magnetic susceptibility at closely spaced intervals (1 and 0.25 m) in two section of BIFs from the Sturtian glaciation in the Flinders Ranges of South Australia. Visually both sections show clear signs of two high-frequency and three lower frequency kinds of cycles, expressed in thickness.

The tricky step was converting the magneto-stratigraphic data to a time series. High-precision zircon U-Pb dating of volcanic rocks in the sequence suggested a mean BIF deposition rate of 3.7 to 4.4 cm per thousand years. This allowed the thickness of individual bands and packages to be expressed in years, the prerequisite for time-series analysis of the BIF magneto-stratigraphic sequence. This involves a mathematical process known as the Fast-Fourier Transform, which expresses the actual data as a spectral curve. Peaks in the curve represent specific frequencies expressed as cycles per metre. The rate of deposition of the BIF allows each peak to be assigned a frequency in years, which can then be compared with the hypothetical spectrum associated with the Milankovich effect. One of the BIF sequences yielded peaks corresponding to 23, 97 and 106 ka. These match the effects of variation in precession (23 ka) and ‘short’ orbital eccentricity (97 and 106 ka) found in Cenozoic sea-floor sediments and ice cores. The other showed peaks at 405, 754 and 1.2 Ma corresponding to ‘long’ orbital eccentricity and long-term features of both obliquity and precession. Quite a result! But how does this bear on Snowball Earth events? Cyclical changes in solar heating would have affected the extent of ice sheets and sea ice at all latitudes, forcing episodes of expansion and contraction and thus changes in sediment supply to the sea floor. That helps explain the many observed variations in sedimentation other than that of BIFs. Rather than supporting a ‘hard’ Snowball model of total marine ice cover for millions of years, it suggests that such an extreme was relieved by period of extensive open water, much as affected the modern Arctic Ocean for the last 2 million years or so. There could have been global equivalents of ice ages and interglacials during the Sturtian and Marinoan. ‘Hard’ conditions would have shut down much of the oceans’ biological productivity, periodically to have been reprieved by more open conditions: a mechanism that would have promoted both extinctions and evolutionary radiations. Snowball events may have driven the takeover of prokaryote (bacteria) dominance by that of the multicelled eukaryotes that is signalled by the Ediacaran faunas that swiftly followed glacial epochs and the explosion of multicelled life during the Cambrian. As eukaryotes, we may well owe our existence to Snowball.

Kicking-off planetary Snowball conditions

Untitled-1
Artist’s impression of the glacial maximum of a Snowball Earth event (Source: NASA)

Twice in the Cryogenian Period of the Neoproterozoic, glacial- and sea ice extended from both poles to the Equator, giving ‘Snowball Earth’ conditions. Notable glacial climates in the Phanerozoic – Ordovician, Carboniferous-Permian and Pleistocene – were long-lived but restricted to areas around the poles, so do not qualify as Snowball Earth conditions. It is possible, but less certain, that Snowball Earth conditions also prevailed during the Palaeoproterozoic at around 2.4 to 2.1 billion years ago. This earlier episode roughly coincided with the ‘Great Oxidation Event’, and one explanation for it is that the rise of atmospheric oxygen removed methane, a more powerful greenhouse gas than carbon dioxide, by oxidizing it to CO2 and water. That may well have been a consequence of the evolution of the cyanobacteria, their photosynthesis releasing oxygen to the atmosphere. The Neoproterozoic ‘big freezes’ are associated with rapid changes in the biosphere, most importantly with the rise of metazoan life in the form of the Ediacaran fauna, the precursor to the explosion in animal diversity during the Cambrian. Indeed all major global coolings, restricted as well as global, find echoes in the course of biological evolution. Another interwoven factor is the rock cycle, particularly volcanism and the varying pace of chemical weathering. The first releases CO2 from the mantle, the second helps draw it down from the atmosphere when weak carbonic acid in rainwater rots silicate minerals (see: Can rock weathering halt global warming, July 2020). All such interplays between major and sometimes minor ‘actors’ in the Earth system influence climate and, in turn, climate inevitably affects all the rest. With such complexity it is hardly surprising that there is a plethora of theories about past climate shifts.

As well as a link with fluctuations in the greenhouse effect, climate is influenced by changes in the amount of solar heating, for which there are yet more options to consider. For instance, the increase in Earth’s albedo (reflectivity) that results from ice cover, may lead through a feedback effect to runaway cooling, particularly once ice extends beyond the poorly illuminated poles. Volcanic dust and sulfate aerosols in the stratosphere also increase albedo and the tendency to cooling, as would interplanetary dust. More complexity to befuddle would-be modellers of ancient climates. Yet it is safe to say that, within the maelstrom of contributory factors, the freeze-overs of Snowball conditions must have resulted from our planet passing through some kind of threshold in the Earth System. Two theoretical scientists from the Department of Earth, Atmospheric, and Planetary Sciences at the Massachusetts Institute of Technology have attempted to cut through the log-jam by modelling the dynamics of the interplay between the ice-albedo feedback and the carbon-silicate cycle of weathering (Arnscheidt, C.W. & Rothman, D.H. 2020. Routes to global glaciation. Proceedings of the Royal Society A, v. 476, article 0303 online; DOI: 10.1098/rspa.2020.0303). Their mathematical approach involves two relatively simple, if long-winded, equations based on parameters that express solar heating, albedo, surface temperature and pressure, and the rate of volcanic outgassing of CO2; a simplification that sets biological processes to one side.

Unlike previous models, theirs can simulate varying rates, particularly of changes in solar energy input. The key conclusion of the paper is that if solar heating decreases faster than a threshold rate the more a planet’s surface water is likely to freeze from pole to pole. The authors suggest that a Snowball Earth event would result from a 2% fall in received solar radiation over about ten thousand years: pretty quick in a geological sense. Such a trigger might stem from a volcanic ‘winter’ scenario, an increase in clouds seeded by spores of primitive marine algae or other factors. The real ‘tipping point’ would probably be the high albedo of ice. There is a warning in this for the present, when a variety of means of decreasing solar input have been proposed as a ‘solution’ to global warming.

Because the Earth orbits the Sun in the ‘Goldilocks Zone’ and is volcanically active even global glaciation would be temporary, albeit of the order of millions of years. The cold would have shut down weathering so that volcanic CO2 could slowly build up in the atmosphere: the greenhouse effect would rescue the planet. Further from the Sun, a planet would not have that escape route, regardless of its atmospheric concentration of greenhouse gases: a neat lead-in to another recent paper about the ancient climate of Mars (Grau Galofre, A. et al. 2020. Valley formation on early Mars by subglacial and fluvial erosion. Nature Geoscience, early online article; DOI: 10.1038/s41561-020-0618-x)

A Martian channel system: note later cratering (credit: European Space Agency)

There is a lot of evidence from both high-resolution orbital images of the Martian surface and surface ‘rovers’ that surface water was abundant over a long period in Mars’s early history. The most convincing are networks of channels, mainly in the southern hemisphere highlands. They are not the vast channelled scablands, such as those associated with Valles Marineris, which probably resulted from stupendous outburst floods connected to catastrophic melting of subsurface ice by some means. There are hundreds of channel networks, that resemble counterparts on Earth. Since rainfall and melting of ice and snow have carved most terrestrial channel networks, traditionally those on Mars have been attributed to similar processes during an early warm and wet phase. The warm-early Mars hypothesis extends even to interpreting the smooth low-lying plains of its northern hemisphere – about a third of Mars’s surface area – as the site of an ocean in those ancient times. Of course, a big question is, ‘Where did all that water go?’ Another relates to the fact that the early Sun emitted considerably less radiation 4.5 billion years ago than it does now: a warm-wet early Mars is counterintuitive.

Anna Grau Galofre of the University of British Columbia and co-authors found that many of the networks on Mars clearly differ in morphology from one another, even in small areas of its surface. Drainage networks on Earth conform to far fewer morphological types. By comparing the variability on Mars with channel-network shapes on Earth, the authors found a close match for many with those that formed beneath the ice sheet that covered high latitudes of North America during the last glaciation. Some match drainage patterns typical of surface-water erosion, but both types are present in low Martian latitudes: a suggestion of ‘Snowball Mars’ conditions? The authors reached their conclusions by analysing six mathematical measures that describe channel morphology for over ten thousand individual valley systems. Previous analyses of individual systems discovered on high-resolution images have qualitative comparisons with terrestrial geomorphology

See also: Chu, J. 2020. “Snowball Earths” May Have Been Triggered by a Plunge in Incoming Sunlight – “Be Wary of Speed” (SciTech Daily 29 July 2020); Early Mars was covered in ice sheets, not flowing rivers, researchers say (Science Daily, 3 August 2020)

How marine animal life survived (just) Snowball Earth events

diamict3
A Cryogenian glacial diamictite containing boulders of many different provenances from the Garvellach Islands off the west coast of Scotland. (Credit: Steve Drury)

Glacial conditions during the latter part of the Neoproterozoic Era extended to tropical latitudes, probably as far as the Equator, thereby giving rise to the concept of Snowball Earth events. They left evidence in the form of sedimentary strata known as diamictites, whose large range of particle size from clay to boulders has a range of environmental explanations, the most widely assumed being glacial conditions. Many of those from the Cryogenian Period are littered with dropstones that puncture bedding, which suggest that they were deposited from floating ice similar to that forming present-day Antarctic ice shelves or extensions of onshore glaciers. Oceans on which vast shelves of glacial ice floated would have posed major threats to marine life by cutting off photosynthesis and reducing the oxygen content of seawater. That marine life was severely set back is signalled by a series of perturbations in the carbon-isotope composition of seawater. Its relative proportion of 13C to 12C (δ13C) fell sharply during the two main Snowball events and at other times between 850 to 550 Ma. The Cryogenian was a time of repeated major stress to Precambrian life, which may well have speeded up evolution, sediments of the succeeding Ediacaran Period famously containing the first large, abundant and diverse eukaryote fossils.

For eukaryotes to survive each prolonged cryogenic stress required that oxygen was indeed present in the oceans. But evidence for oxygenated marine habitats during Snowball Earth events has been elusive since these global phenomena were discovered. Geoscientists from Australia, Canada, China and the US have applied novel geochemical approaches to occasional iron-rich strata within Cryogenian diamictite sequences from Namibia, Australia and the south-western US in an attempt to resolve the paradox (Lechte, M.A. and 8 others 2019. Subglacial meltwater supported aerobic marine habitats during Snowball Earth. Proceedings of the National Academy of Sciences, 2019; 201909165 DOI: 10.1073/pnas.1909165116). Iron isotopes in iron-rich minerals, specifically the proportion of 56Fe relative to that of 54Fe (δ56Fe), help to assess the redox conditions when they formed. This is backed up by cerium geochemistry and the manganese to iron ratio in ironstones.

In the geological settings that the researchers chose to study there are sedimentological features that reveal where ice shelves were in direct contact with the sea bed, i.e. where  they were ‘grounded’. Grounding is signified by a much greater proportion of large fragments in diamictites, many of which are striated through being dragged over underlying rock. Far beyond the grounding line diamictites tend to be mainly fine grained with only a few dropstones. The redox indicators show clear changes from the grounding lines through nearby environments to those of deep water beneath the ice. Each of them shows evidence of greater oxidation of seawater at the grounding line and a falling off further into deep water. The explanation given by the authors is fresh meltwater flowing through sub-glacial channels at the base of the grounded ice fed by melting at the glacier surface, as occurs today during summer on the Greenland ice cap and close to the edge of Antarctica. Since cold water is able to dissolve gas efficiently the sub-glacial channels were also transporting atmospheric oxygen to enrich the near shore sub-glacial environment of the sea bed. In iron-rich water this may have sustained bacterial chemo-autotrophic life to set up a fringing food chain that, together with oxygen, sustained eukaryotic heterotrophs. In such a case, photosynthesis would have been impossible, yet unnecessary. Moreover, bacteria that use the oxidation of dissolved iron as an energy source would have caused Fe-3 oxides to precipitate, thereby forming the ironstones on which the study centred. Interestingly, the hypothesis resembles the recently discovered ecosystems beneath Antarctic ice shelves.

Small and probably unconnected ecosystems of this kind would have been conducive to accelerated evolution among isolated eukaryote communities. That is a prerequisite for the sudden appearance of the rich Ediacaran faunas that colonised sea floors globally once the Cryogenian ended. Perhaps these ironstone-bearing diamictite occurrences where the biological action seems to have taken place might, one day, reveal evidence of the precursors to the largely bag-like Ediacaran animals

Geochemical background to the Ediacaran explosion

The first clear and abundant signs of multicelled organisms appear in the geological record during the 635 to 541 Ma Ediacaran Period of the Neoproterozoic, named from the Ediacara Hills of South Australia where they were first discovered in the late 19th century. But it wasn’t until 1956, when schoolchildren fossicking in Charnwood Forest north of Leicester in Britain found similar body impressions in rocks that were clearly Precambrian age that it was realised the organism predated the Cambrian Explosion of life. Subsequently they have turned-up on all continents that preserve rocks of that age (see: Larging the Ediacaran, March 2011). The oldest of them, in the form of small discs, date back to about 610 Ma, while suspected embryos of multicelled eukaryotes are as old as the very start of the Edicaran (see; Precambrian bonanza for palaeoembryologists, August 2006).

Artist’s impression of the Ediacaran Fauna (credit: Science)

The Ediacaran fauna appeared soon after the Marinoan Snowball Earth glaciogenic sediments that lies at the top of the preceding Cryogenian Period (650-635 Ma), which began with far longer Sturtian glaciation (715-680 Ma). A lesser climatic event – the 580 Ma old Gaskiers glaciation – just preceded the full blooming of the Ediacaran fauna. Geologists have to go back 400 million years to find an earlier glacial epoch at the outset of the Palaeoproterozoic. Each of those Snowball Earth events was broadly associated with increased availability of molecular oxygen in seawater and the atmosphere. Of course, eukaryote life depends on oxygen. So, is there a connection between prolonged, severe climatic events and leaps in the history of life? It does look that way, but begs the question of how Snowball Earth events were themselves triggered. Continue reading “Geochemical background to the Ediacaran explosion”

Snowball Earth: A result of global tectonic change?

The Snowball Earth hypothesis first arose when Antarctic explorer Douglas Mawson (1882-1958)speculated towards the end of his career on an episode of global glaciations, based on his recognition in South Australia of thick Neoproterozoic glacial sediments. Further discoveries on every continent, together with precise dating and palaeomagnetic indications of the latitude at which they were laid down, have steadily concretised Mawson’s musings. It is now generally accepted that frigid conditions enveloped the globe at least twice – the Sturtian (~715 to 660 Ma) and Marinoan (650 to 635 Ma) glacial episodes – and perhaps more often during the Neoproterozoic Era. Such an astonishing idea has spurred intensive studies of geochemistry associated with the events, which showed rapid variations in carbon isotopes in ancient seawater, linked to the terrestrial carbon cycle that involves both life- and Earth processes. Strontium isotopes suggest that the Neoproterozoic launched erratic variation of continental erosion and weathering and related carbon sequestration that underpinned major climate changes in the succeeding Phanerozoic Eon. Increased marine phosphorus deposition and a change in sulfur isotopes indicate substantial change in the role of oxygen in seawater. The preceding part of the Proterozoic Eon is relatively featureless in most respects and is known to some geoscientists as the ‘Boring Billion’.

Untitled-1
Artist’s impression of the glacial maximum of a Snowball Earth event (Source: NASA)

Noted tectonician Robert Stern and his colleague Nathan Miller, both of the University of Texas, USA, have produced a well- argued and -documented case (and probably cause for controversy) that suggests a fundamental change in the way the Precambrian Earth worked at the outset of the Neoproterozoic (Stern, R.J. & Miller, N.R. 2018. Did the transition to plate tectonics cause Neoproterozoic Snowball Earth. Terra Nova, v. 30, p. 87-94). To the geochemical and climatic changes they have added evidence from a host of upheavals in tectonics. Ophiolites and high-pressure, low-temperature metamorphic rocks, including those produced deep in the mantle, are direct indicators of plate tectonics and subduction. Both make their first, uncontested appearance in the Neoproterozoic. Stern and Miller ask the obvious question; Was this the start of plate tectonics? Most geologists would put this back to at least the end of the Archaean Eon (2,500 Ma) and some much earlier, hence the likelihood of some dispute with their views.

They consider the quiescent billion years (1,800 to 800 Ma) before all this upheaval to be evidence of a period of stagnant ‘lid tectonics’, despite the Rodinia supercontinent having been assembled in the latter part of the ‘Boring Billion’, although little convincing evidence has emerged to suggest it was an entity formed by plate tectonics driven by subduction. But how could the onset of subduction-driven tectonics have triggered Snowball Earth? An early explanation was that the Earth’s spin axis was much more tilted in the Neoproterozoic than it is at present (~23°). High obliquity could lead to extreme variability of seasons, particularly in the tropics. A major shift in axial tilt requires a redistribution of mass within a planetary body, leading to true polar wander, as opposed to the apparent polar wander that results from continental drift. There is evidence for such an episode around the time of Rodinia break-up at 800 Ma that others have suggested stemmed from the formation of a mantle superplume beneath the supercontinent.

Considering seventeen possible geodynamic, oceanographic and biotic causes that have been plausibly suggested for global glaciation Stern and Miller link all but one to a Neoproterozoic transition from lid- to plate tectonics. Readers may wish to examine the authors’ reasoning to make up their own minds –  their paper is available for free download as a PDF from the publishers.

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

Sea-level rise following a Snowball Earth

The Cryogenian Period (850 to 635 Ma) of the Neoproterozoic is named for the intense glacial episodes recorded in strata of that age. There were two that palaeomagnetism  in glaciogenic sedimentary rocks indicates that ice covered all of the continents including those in the tropics, and a third, less extreme one. These episodes, when documented in the 1990s, became dubbed, aptly enough, as ‘Snowball Earth’ events. But evidence for frigidity does not pervade the entire Cryogenian, the glacial events being separated by long periods with no sign anywhere of tillites or glaciomarine diamictites shed by floating ice. Each Snowball Earth episode is everywhere overlain by thick carbonate deposits indicating clear, shallow seas and a massive supply of calcium and magnesium ions to seawater. The geochemical change is a clear indicator of intense chemical weathering of the exposed continents. The combination of Ca and Mg with carbonate ions likewise suggests an atmosphere rich in carbon dioxide. For frigidity episodically to have pervaded the entire planet indicates a distinct dearth of the greenhouse gas in the atmosphere during those events. The likely explanation for Snowball Earths is one of booms in the abundance of minute marine organisms, perhaps a consequence of the high phosphorus levels in the oceans during the Neoproterozoic when seawater was alkaline. The carbon-isotope record suggests that there were periodic, massive bursts of organic matter that would have drawn down atmospheric CO2, which coincide with the evidence for global frigidity, although marine life continued to flourish.

Artist’s impression of the glacial maximum of a Snowball Earth event (Source: NASA)

Under such ice-bound conditions the build-up of continental glaciers would have resulted in huge falls in global sea level, far exceeding the 150 m recorded during some late-Pleistocene glacial maxima. The end of each Snowball Earth would have led to equally dramatic rises and continental flooding. Such scenarios are well accepted to have occurred when accumulation of volcanic CO2 during full ice cover reached a threshold of global warming potential that could overcome the reflection of solar radiation by the high albedo of ice extending to the tropics. That threshold has been estimated to have been between 400 to 500 times the CO2 content of the atmosphere at present. Yet it has taken an intricate analysis of sedimentary structures that are commonplace in marine sediments of any age – ripple marks – to quantify the pace of sea-level rise at the end of a Snowball Earth event (Myrow, P.M. et al. 2018. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth. Science, v. 360, p. 649-651; doi:10.1126/science.aap8612).

The Elatina Formation of South Australia, deposited during the Marinoan (~635 Ma) glaciation, is famous for the intricacy of its sedimentary structures especially in the clastic sedimentary rocks beneath the cap carbonate that marks the end of glacial conditions. Among them are laminated silts and fine sands that were originally thought to be the equivalent of modern varved sediments that form annually as lakes or shallow seas freeze over and then melt with the seasons. Since they contain ripple marks the laminates of the Elatina Formation clearly formed as a result of current flow and wave action – the sea surface was therefore ice free while these sediments accumulated. Careful study of the larger ripples, which are asymmetrical, shows that current-flow directions periodically reversed, suggesting that they formed as a result of tidal flows during the bi-monthly cycle of spring and neap tides in marine deltas. Data from experiments in wave tanks shows that the shapes (expressed as their amplitude to wavelength ratio) of wave ripples depend on the orbital motion of water waves at different depths. The smaller ripples are of this kind. So Myrow and colleagues have been able to tease out a time sequence from the tidal ripples and also signs of any variation in the water depth at which the smaller wave ripples formed.

Ripples on a bedding surface in the Elatina Formation, South Australia. They formed under the influence of tidal current flow. (Credit, University of Guelph, https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9367?show=full)

Just over 9 metres of the tidal laminate sequence that escaped any erosion was deposited in about 60 years, giving a sedimentation rate of 27 cm per year. This is extremely high by comparison with those in any modern marine basins, probably reflecting the sediment-charged waters during a period of massive glacial melting. Throughout the full 27 m sequence smaller, wave ripples consistently show that water depth remained between 9 to 16 m for about a century. Over such a short time interval any tectonic subsidence or sag due to sediment load would have been minuscule. So sea-level rise kept pace with deposition; i.e. at the same rate of 27 cm per year. That is at least five times faster than during any of the Pleistocene deglaciations and about a hundred times faster than sea-level rise today that is caused by melting of the Greenland and Antarctic ice caps and thermal expansion of ocean water due to global warming. It has been estimated that the Marinoan ice sheets lowered global sea level by between 1.0 to 1.5 km – ten times more than in the last Ice Age – so deglaciation to the conditions of the cap carbonates, shallow, clear seas at around 50°C, would have taken about 6,000 years at the measured rate.

To read more on the Snowball Earth hypothesis and other early glacial epochs click here

A fully revised edition of Steve Drury’s book Stepping Stones: The Making of Our Home World can now be downloaded as a free eBook

Flourishing life during a Snowball Earth period

That glacial conditions were able to spread into tropical latitudes during the late Neoproterozoic, Cryogenian Period is now well established, as are the time spans of two such events. http://earth-pages.co.uk/2015/05/21/snowball-earth-events-pinned-down/ But what were the consequences for life that was evolving at the time? That something dramatic was occurring is signalled by a series of perturbations in the carbon-isotope composition of seawater. Its relative proportion of 13C to 12C (δ13C) fell sharply during the two main Snowball events and at other times between 850 to 550 Ma. Since 12C is taken up preferentially by living organisms, falls in δ13C are sometimes attributed to periods when life was unusually suppressed. It is certain that the ‘excursions’ indicate that some process(es) must have strongly affected the way that carbon was cycled in the natural world.

English: Earth, covered in ice.
Artist’s impression of a Snowball Earth as it would appear with today’s continental configuration adjacent to the East Pacific Ocean. (Photo credit: Wikipedia)

The further sea ice extended beyond landmasses during Snowball events the more it would reduce the amount of sunlight reaching the liquid ocean and so photosynthesis would be severely challenged. Indeed, if ice covered the entire ocean surface – the extreme version of the hypothesis – each event must have come close to extinguishing life. An increasing amount of evidence, from climate- and oceanographic modelling and geological observation, suggests that a completely icebound Earth was unlikely. Nevertheless, such dramatic climate shifts would have distressed living processes to the extent that extinction rates were high and so was adaptive radiation of survivors to occupy whatever ecological niches remained or came into being: evolution was thereby speeded up. The roughly half-billion years of the Neoproterozoic hosted the emergence and development of multicellular organisms (metazoan eukaryotes) whose cells contained a nucleus and other bodies such as mitochondria and the chloroplasts of photosynthesisers. This hugely important stage of evolution burst forth shortly after – in a geological sense – the last Snowball event, during the Ediacaran and the Cambrian Explosion. But recent investigations by palaeontologists in glaciogenic rocks from China unearthed a rich diversity of fossil organisms that thrived during a Snowball event (Ye, Q. et al. 2015. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology, v. 43, p. 507-510).

The Nantuo Formation in southern China contains glaciogenic sedimentary rocks ascribed to the later Marinoan glaciation (640 to 635 Ma). Unusually, the pebbly Nantuo glaciogenic rocks contain thin layers of siltstones and black shales. The fact that these layers are free of coarse fragments that floating ice may have dropped supports the idea that open water did exist close to glaciated landmasses in what is now southern China. Palaeomagnetic measurements show that the area was at mid-latitudes during the Marinoan event. The really surprising feature is that they contain abundant, easily visible fossils in the form of carbonaceous ribbons , disks, branching masses and some that dramatically resemble complex multi-limbed animals, though they are more likely to be part of an assemblage of algal remains. Whatever their biological affinities, the fossils clearly signify that life happily flourished beneath open water where photosynthesis provided a potential base to a food chain, though no incontrovertible animals occur among them.

See also: Corsetti, F.A. 2015. Live during Neoproterozoic Snowball Earth. Geology, v. 43, p. 559-560.

Snowball Earth events pinned down

The Period that lasted from 850 to 635 million years ago, the Cryogenian, takes its name from evidence for two and perhaps three episodes of glaciation at low latitudes. It has been suggested that, in some way, they were instrumental in the decisive stage of biological evolution from which metazoan eukaryotes emerged: the spectacular Ediacaran fossil assemblages follow on the heels of the last such event Although controversies about the reality of tropical latitudes experiencing ice caps have died away, there remains the issue of synchronicity of such frigid events on all continents, which is the central feature of so-called ‘Snowball Earth’ events. While each continent does reveal evidence for two low latitude glaciations – the Sturtian (~710 Ma) and the later Marinoan (~635 Ma) – in the form of diamictites (sediments probably dropped from floating ice and ice caps) it has proved difficult to date their start and duration. That is, the cold episodes may have been diachronous – similar conditions occurring at different localities at different times. Geochronology has, however, moved on since the early disputes over Snowball Earths and more reliable and precise dates for beginnings and ends are possible and have been achieved in several places (Rooney, A.D. et al. 2015. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology, v. 43, p. 459-462).

One computer simulation of conditions during a...
Computer simulation of conditions during a Snowball Earth period. (credit: Macmillan Publishers Ltd: Hyde et al., Nature 405:425-429, 2000)

Rooney and colleagues from Harvard and the University of Houston in the USA used rhenium-osmium radiometric dating in Canada, Zambia and Mongolia. The Re-Os method is especially useful for sulfide minerals as in the pyritic black shales that occur extensively in the Cryogenian, generally preceding and following the glacial diamictites and their distinctive carbonate caps. Combined with a few ages obtained by other workers using the Re-Os method and U-Pb dating of volcanic units that fortuitously occur immediately beneath or within diamictites, Rooney et al. establish coincident start and stop dates and thus durations of both the Sturtian and Marinoan glacial events: 717 to 660 Ma and 640 to 635 Ma respectively on all three continents. Their data is also said to refute the global extent and even the very existence of an earlier, Kaigas glacial event (~740 Ma) previous recorded from diamictites in Namibia, the Congo, Canada and central Asia. This assertion is based on the absence of diamictites with that age in the area that they studied in Canada and their own dating of a diamictite in Zambia, which is one that others assigned to the Kaigas event

The dating is convincing evidence for global glaciation on land and continental margins in the Cryogenian, as all the dates are from areas based on older continental crust. But the concept of Snowball Earth, in its extreme form, is that the oceans were ice-capped too as the name suggests, which remains to be convincingly demonstrated. That would only be achieved by suitably dated diamictites located on obducted oceanic crust in an ophiolite complex. Moreover, there are plenty more Cryogenian diamictites on other palaeo-continents and formed at different palaeolatitudes that remain to be dated (see here)

The launch of modern life on Earth

To set against five brief episodes of mass extinction – some would count the present as being the beginning of a sixth – is one short period when animals with hard parts appeared for the first time roughly simultaneously across the Earth. Not only was the Cambrian Explosion sudden and pervasive but almost all phyla, the basic morphological divisions of multicellular life, adopted inner or outer skeletons that could survive as fossils. Such an all-pervading evolutionary step has never been repeated, although there have been many bursts in living diversity. Apart from the origin of life and the emergence of its sexual model, the eukaryotes, nothing could be more important in palaeobiology than the events across the Cambrian-Precambrian boundary.

English: Opabinia regalis, from the Cambrian B...
One of the evolutionary experiments during the Cambrian, Opabinia regalis, from the Burgess Shale. (credit: Wikipedia)

This eminent event has been marked by most of the latest issue of the journal Gondwana Research (volume 25, Issue 3 for April 2014)in a 20-paper series called Beyond the Cambrian Explosion: from galaxy to genome (summarized  by Isozaki, Y., Degan, S.., aruyama,, S.. & Santosh, M. 2014. Beyond the Cambrian Explosion: from galaxy to genome.  Gondwana Research, v. 25, p. 881-883). Of course, these phenomenal events have been at issue since the 19th century when the division of geological time began to be based on the appearance and vanishing of well preserved and easily distinguished fossils in the stratigraphic column. On this basis roughly the last ninth of the Earth’s history was split on palaeontological grounds into the 3 Eras, 11 Periods, and a great many of the briefer Epochs and Ages that constitute the Phanerozoic. Time that preceded the Cambrian explosion was for a long while somewhat murky mainly because of a lack of means of subdivision and the greater structural and metamorphic damage that had been done to the rocks that had accumulated over 4 billion years since the planet accreted. Detail emerged slowly by increasingly concerted study of the Precambrian, helped since the 1930s by the ability to assign numerical ages to rocks. Signs of life in sediments that had originally been termed the Azoic (Greek for ‘without life’) gradually turned up as far back as 3.5 Ga, but much attention focused on the 400 Ma immediately preceding the start of the Cambrian period once abundant trace fossils had been found in the Ediacaran Hills of South Australia that had been preceded by repeated worldwide glacial epochs. The Ediacaran and Cryogenian Periods (635-541 and 850-635 Ma respectively) of the Neoproterozoic figure prominently in 9 of the papers to investigate or review the ‘back story’ from which the crucial event in the history of life emerged. Six have a mainly Cambrian focus on newly discovered fossils, especially from a sedimentary sequence in southern China that preserves delicate fossils in great detail: the Chengjian Lagerstätte. Others cover geochemical evidence for changes in marine conditions from the Cryogenian to Cambrian and reviews of theories for what triggered the great faunal change.

Since the hard parts that allow fossils to linger are based on calcium-rich compounds, mainly carbonates and phosphates that bind the organic materials in bones and shells, it is important to check for some change in the Ca content of ocean water over the time covered by the discourse. In fact there are signs from Ca-isotopes in carbonates that this did change. A team of Japanese and Chinese geochemists drilled through an almost unbroken sequence of Ediacaran to Lower Cambrian sediments near the Three Gorges Dam across the Yangtse River and analysed for 44Ca and 42Ca (Sawaki, Y. et al. 2014. The anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in carbonates in the Three Gorges area, South China. Gondwana Research, v. 25, p. 1070-1089) calibrated to time by U-Pb dating of volcanic ash layers in the sequence (Okada, Y. et al. 2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Research, v. 25, p. 1027-1044). They found that there were significant changes in the ratio between the two isotopes. The isotopic ratio underwent a rapid decrease, an equally abrupt increase then a decrease around the start of the Cambrian, which coincided with a major upward ‘spike’ and then a broad increase in the 87Sr/86Sr isotope ratio in the Lower Cambrian. The authors ascribe this to an increasing Ca ion concentration in sea water through the Ediacaran and a major perturbation just before the Cambrian Explosion, which happens to coincide with Sr-isotope evidence for a major influx of isotopically old material derived from erosion of the continental crust. As discussed in Origin of the arms race (May 2012) perhaps the appearance of animals’ hard parts did indeed result from initial secretions of calcium compounds outside cells to protect them from excess calcium’s toxic effects and were then commandeered for protective armour or offensive tools of predation.

"SNOWBALL EARTH" - 640 million years ago
Artists impression of a Snowball Earth event 640 Ma ago (credit: guano via Flickr)

Is there is a link between the Cambrian Explosion and the preceding Snowball Earth episodes of the Cryogenian with their associated roller coaster excursions in carbon isotopes? Xingliang Zhang and colleagues at Northwest University in Xian, China (Zhang, X. et al. 2014. Triggers for the Cambrian explosion: Hypotheses and problems.  Gondwana Research, v. 25, p. 896-909) propose that fluctuating Cryogenian environmental conditions conspiring with massive nutrient influxes to the oceans and boosts in oxygenation of sea water through the Ediacaran set the scene for early Cambrian biological events. The nutrient boost may have been through increased transfer o f water from mantle to the surface linked to the start of subduction of wet lithosphere and expulsion of fluids from it as a result of the geotherm cooling through a threshold around 600 Ma (Maruyama, S. et al. 2014. Initiation of leaking Earth: An ultimate trigger of the Cambrian explosion. Gondwana Research, v. 25, p. 910-944). Alternatively the nutrient flux may have arisen by increased erosion as a result of plume-driven uplift (Santosh, M. et al. 2014. The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth. Gondwana Research, v. 25, p. 945-965).

A bolder approach, reflected in the title of the Special Issue, seeks an interstellar trigger (Kataoka, R. et al. 2014. The Nebula Winter: The united view of the snowball Earth, mass extinctions, and explosive evolution in the late Neoproterozoic and Cambrian periods. Gondwana Research, v. 25, p. 1153-1163). This looks to encounters between the Solar System and dust clouds or supernova remnants as it orbited the galactic centre: a view that surfaces occasionally in several other contexts. Such chance events may have been climatically and biologically catastrophic: a sort of nebular winter, far more pervasive than the once postulated nuclear winter of a 3rd World War. That is perhaps going a little too far beyond the constraints of evidence, for there should be isotopic and other geochemical signs that such an event took place. It also raises yet the issue that life on Earth is and always has been unique in the galaxy and perhaps the known universe due to a concatenation of diverse chance events, without structure in time or order, which pushed living processes to outcomes whose probabilities of repetition are infinitesimally small.

Enhanced by Zemanta