Holocene migrations of people into Britain

People assigned to a variety of human species: Homo sapiens H. neanderthalensis (Swanscombe, 400 ka and several later times ) H heidelbergensis (Boxgrove, ca 500 ka, )H. antecessor (Happisburgh, ca 950 ka) – have left signs of their presence in Britain. Human occupancy has largely depended on climate. Around 9 times since the first known human presence here, much of Britain was repeatedly buried by glacial ice to become a frigid desert for tens of thousands of years. Between 180 and 60 ka only a couple of flint artefacts found in road excavations in Kent hint at Neanderthal visitors. For most of the Late Pleistocene the archipelago seems to have been devoid of humans. Arguably, Europe’s first known anatomically modern humans occupied several caves in Devon, Derbyshire and South Wales as early as around 43 ka, while climate was cooling, only to abandon Britain during the Last Glacial Maximum (24 to 18 ka ago). As climate warmed again thereafter, sporadic occupation by Late Palaeolithic hunter-gatherers occurred up to the sudden onset of the frigid Younger Dryas (12.9 ka). Once warming returned quickly 11,700 years ago, sea level was low enough for game and hunter gatherers to migrate to Britain; this time for permanent occupancy. Bones of the earliest known of these Mesolithic people have yielded DNA and a surprise: they were dark skinned and so far as we can tell remained so until the beginning of Neolithic farming in Britain around 6100 years ago. The DNA of most living Britons with pale skins retains up to 10% of inheritance from these original hunter gatherers.  Much the same is known from elsewhere in NW Europe. In the early Holocene it was possible to walk across what is now the southern North Sea thanks to Doggerland. Following a tsunami at around 8.2 ka this rich area of wetland vanished, so that all later migration demanded sea journeys.  

Mesolithic people remained in occupation of the British Isles for another two millennia. A wealth of evidence, summarised nicely in Ray, K. & Thomas, J. 2018, Neolithic Britain, Oxford University Press, suggests that there was a lengthy period of overlap between Mesolithic and Neolithic occupation around 4100 BCE. The main difference between the two groups was that Neolithic communities subsisted on domesticated grains and animals, while those of the Mesolithic consumed wild resources. Cultural clues in archaeological finds, however, suggest a lot in common, such as the erection of various kinds of monuments. Posts of tree trunks, sometimes arranged in lines, were raised in the Mesolithic and lines of probably ritual pits were dug. Both ‘traditions’ continued into the Neolithic and evolved to stone monuments, to which were added burials of different kinds. It is worth noting that Stonehenge was developed on a site that held much earlier, large totem-pole like posts, with a nearby spring that had hosted regular gatherings of Mesolithic people. Signs of Mesolithic occupation in Britain extend just as widely as do those of Neolithic practices. A study of DNA from 7 Mesolithic skeletons and 67 of early Neolithic age (Brace, S. and 20 others 2019. Population Replacement in Early Neolithic Britain. Nature Ecology & Evolution, v. 3, p. 765-771; DOI: 10.1038/s41559-019-0871-9) revealed that early Neolithic people did not wipe out the genetic make-up (either by complete displacement or annihilation) of their predecessors. About 20 to 30% of Neolithic DNA was inherited from them; as would be expected from assimilation of a probably much smaller number of hunter-gatherers into a larger population  of  immigrants who brought farming and herding from Asian Turkey (Anatolia). Such ‘hybrid’ genetics was widespread in Europe and they are referred to as the Early European Farmers (EEF). As Ray and Thomas suggest, aspects of Mesolithic culture may have been adopted by the newcomers across the British Isles from Orkney to Wiltshire.

Around 2400 BCE the earliest Neolithic ceremonial site at Brodgar on Orkney was destroyed to the accompaniment of an enormous feast that consumed several hundred cattle. At about the same time several men, whose tooth geochemistry indicated an origin in the European Alps, were buried on Salisbury Plain together with the earliest metal artefacts known from Britain (copper knives), the accoutrements of archery and distinctive, bell-shaped pottery beakers. Stonehenge was ‘remodelled’ shortly afterwards, with the addition of its giant trilithons, four of which were later adorned with carvings of metal axes and daggers. The Early Bronze (or Chalcolithic) Age had arrived! A 2018 study of ancient DNA from Bronze Age burials in Europe suggested a far more drastic swamping of Neolithic genetic heritage by the ‘Beaker people’ (Olalde, I. and a great many others 2018. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, v. 555, p. 190-196; DOI: 10.1038/nature25738). The skeletons from Britain analysed by Olalde et al. apparently suggested that, within a few hundred years, up to 90% of the Neolithic gene pool had been removed from the British population. Who were these people who used metals and the distinctive Bell Beakers, where did they come from and what did they do?

The closest match to the British and western European Bronze Age DNA was that associated with the Yamnaya people from the steppes of SE Ukraine and Southern Russia who had developed a culture centred on herding. They had also adopted the wheel from people of the Mesopotamian plains and had domesticated the horse for riding and pulling carts: ideal for their semi-nomadic lifestyle and for moving en masse. After 3000 BCE they spread into Europe, as widely recorded by their distinctive beakers and the presence of their DNA in the genomes of later Europeans. Their burials – in ‘kurgans’ – resembled the round barrows that appeared on Salisbury Plain and elsewhere during the Bronze Age. The DNA replacement data from 2018 were limited and held few clues to how it happened. One possibility for such a dramatic change could be a violent takeover that drove down the population of British Neolithic people. To address the broader influence of migration in more detail and over a loner time span, a team led by the Universities of York and Vienna, and Harvard Medical School (Patterson, N. and a great many others 2021. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature, early online release; DOI: 10.1038/s41586-021-04287-4) used ancient DNA from 793 individuals excavated in Britain (416 individuals) and continental Europe (377) from Bronze- to Iron Age sites (2300 to ~100 BCE).

The proportion of Early European Farmers DNA in British individuals from the Bronze Age (2400 BCE) to the Iron Age (750 BCE to 43 CE). Note the ‘fuzzy’ nature of the data, and that the decline in EEF in British individuals was not as great as earlier analyses had shown. Remarkably, the ‘Amesbury Archer’, who brought the first metals to Britain, had a higher proportion of EEF ancestry than the Early Bronze-Age average. (Credit: Patterson et al. Fig. 3)

The new data from Britain suggest that the migrants, who crossed the Channel later in the Bronze Age, were of mixed ethnicity, but most carried EEF genes. The influence of earlier migrants from the Yamnaya heartlands is present, but so too are relics of Mesolithic ancestry. Interestingly, the British data show a much larger increase in the genes associated with lactase persistence, which marks the ability of adults to digest milk, than was apparent in the wider European population (50% compared with about 7% in Eastern Europeans of the time). Whatever the impact of the first influx of metal-using people – it may have been culturally decisive in Britain – by the end of the Bronze Age the EEF ‘signature’ had increased in peoples’ genomes. Rather than some kind of invasion, the influx was more likely to have been a sustained movement of people to Britain over several hundred years By the Iron Age, almost half the ancestry of Britain, particularly in England and Wales, was once again predominantly of EEF origin (around 40% of the mixture), but culture had become completely different. There are even suggestions that the influx brought with it the beginnings of Celtic languages. Yet the data leave a great deal of further analysis to be undertaken.

See also: Drury, S.A. 2019. Genetics and the peopling of Britain: We are all hybrids, People and Nature; Ancient DNA Analysis Reveals Large Scale Migrations Into Bronze Age Britain, SciTechDaily, 28 December 2021.

Some Homo naledi news

In 2015 the remains of about 15 hominins, new to science, were found in a near-inaccessible South African cave (See: The ‘star’ hominin of South Africa;  September 2015), that number having risen to more than 24 at the time of writing. The ‘star’ status of Homo naledi (named after the cave’s name Naledi meaning star in the local Sotho language) arose partly from an extraordinary barrage of promotion by the organisers of the expedition that unearthed them (probably to boost fundraising). But it was indeed one of the most extraordinary discoveries in palaeoanthropology. The remains were recovered by a team of women archaeologists who small and lithe enough to wriggle through a maze of extremely narrow cave passages. The bones in the remote chamber were complete, with no sign of physical trauma, except gnawing by snails and beetles. Few hominin fossils were found in the more accessible parts of the cave. One likely explanation was that a living H. naledi group had deliberately carried the bodies through the cave system for burial – at less than 1.5 m tall with a slender build they could have done this far more easily than the modern excavators. A plausible alternative is that a group of H. naledi scrambled deep into the cave on being panicked by large predators, and suffocated as CO2 built-up to toxic levels.

Map of the Rising Star cave system in Gautong Province South Africa. The yellow dot marks the chamber where Homo naledi fossils were first found; the red one is the site of a new discovery. (Credit: Elliott et al 2021, PaleoAnthropology. Issue 1.64, Fig. 1)

Initially, the bones were estimated to be 2 Ma old. The fossils are so well-preserved that most aspects of their functional anatomy are known in great detail, such as the articulation of their hands and feet. Although not a single tool was found in the cave deposit, to get into the far reaches of the labyrinthine cave system they must have lit the way with firebrands. The anatomy of H. naledi is far more advanced than that of contemporary H. habilis. The discoverers speculated that the group may have been a species that gave direct rise to the later H. ergaster and erectus, and ultimately us. Alternatively, the individuals’ diminutive size suggested parallels with much later H. floresiensis and H. luzonensis from the other side of the world. Much of this hype was later blunted by more reliable geochronology indicating an age of between 236 ka and 335 ka: i.e. about the time when anatomically modern humans were already roaming Africa. A more plausible conclusion, therefore, is that H. naledi was one of at least 6 hominin groups that co-occupied the late-Pleistocene world: i.e. similar to H. floresiensis.

Now the partial skull and half a dozen teeth of an immature H. naledi has been recovered from another remote chamber in the cave system (Brophy, J.K. et al. 2021. Immature Hominin Craniodental Remains From a New Locality in the Rising Star Cave System, South Africa. PaleoAnthropology. Issue 1.64; DOI: 10.48738/2021.iss1.64). Fossils of young humans are rare, their bones being thinner and much more fragile than those of adults, so the skull had to be reconstructed from 28 fragments. Unlike the older individuals from the main chamber, there are no other bones associated with the skull. Oddly, the supposedly young H. naledi’s brain volume (between 480 to 610 cm3) is between 90 to 95 % that of adults. A possible explanation for this degree of similarity is that these beings reached maturity far more quickly than do anatomically modern humans. The evidence for youth is based on close dental similarity with those of other ‘immature’ specimens from the main bone deposit, and most importantly that two of the teeth are demed to be deciduous (‘milk’) teeth. Yet the ‘milk’ teeth show severely chipped enamel as do the permanent teeth of more mature specimens, to the extent of being unique in the fossil record of hominins. Clearly, their diet was sand-rich.

Shortly after publication in the journal PaleoAnthropology during early November 2021 the world’s media leapt on the two papers rorting these new finds. Yet it is hard to judge why it was deemed by science journalists to have truly popular appeal. It actually adds very little to the H. naledi story, apart from specialised anatomical description. Despite the skull being bereft of the rest of the individual’s body, the authors ‘…regard it as likely that some hominin agency was involved in the deposition of the cra­nial material’.  Perhaps the ‘star’ status was rekindled because the press release from the University of the Witwatersrand used the word ‘child’ again and again – a sure fire way of getting wide attention. The published papers properly refers to it as an ‘immature hominin individual’, which it undoubtedly is.  The same sort of attention came the way of Raymond Dart from a small skull of Australopithecus africanus found in 1924 by workers in a limestone quarry – he called it ‘the Taung Child’. Of course, H. naledi is one of the best-preserved hominins known. But how does its current newsworthiness rank above H. floresiensis? Now, that was a surprise, but the hype about that tiny human has died down. And when H. naledi was originally deemed to be 2 Ma old, it too was astonishing. But since its true, quite young age was determined, it too is no longer such a big deal.

Interestingly, South African scientists self-proclaimed the name ‘Cradle of Humankind’ for the area in Gautung Province close to Johannesburg, which is rich in limestone caves and has a long history of fossil hominin discoveries since Raymond Dart’s Taung Child. But the earliest anatomically modern human remains are from Jebel Irhoud in Morocco, and the oldest known hominin fossils are from Chad, and most advances in early hominin evolution have stemmed from Ethiopia, Kenya and Tanzania.   The fossiliferous part of Gautung Province rightly has World Heritage status, but not under that name. Instead it is called more accurately ‘Fossil Hominid Sites of South Africa”

See also: Partial skull of a child of Homo naledi: Insight into stages of life of remarkable species. Science Daily, November 2021.

A cometary air-burst over South America 12 thousand years ago

Earth-logs has previously covered quite a few hypotheses involving catastrophic astronomical events of the past, often returning to them as new data and ideas emerge. They range from giant impacts, exemplified in the mass extinction at the K-Pg boundary to smaller-scale events that may have coincided with important changes in climate, such as the sudden onset of the Younger Dryas, and a few that have been suggested as agencies affecting local human populations such as the demise of Sodom by a cosmogenic air-burst. Some of the papers that spurred the Earth-pages posts have been widely regarded in the geoscience community. Yet there have been others that many have doubted, and even condemned. For instance, data used by the consortium that suggested an extraterrestrial event triggered the frigid millennium of the Younger Dryas (YD) have been seriously and widely questioned. A sizeable number of the team that were under close scrutiny in 2008 joined others in 2019 to back the YD air-burst hypothesis again, using similarly ‘persuasive’ data from Chile. Members of the original consortium of academics also contributed to the widely disputed notion of a cosmic air-burst having destroyed a Bronze Age urban centre in Jordan that may, or may not, have been the site of the Biblical Sodom. Again, they cited almost the ‘full monty’ of data for high-energy astronomical events, but again no crater or substantial melt glass, apart from tiny spherules. Now another paper on much the same theme, but none of whose authors contributed to those based on possibly ‘dodgy’ data, has appeared in Geology (Schultz, P.H. et al. 2021. Widespread glasses generated by cometary fireballs during the Late Pleistocene in the Atacama Desert, Chile. Geology, published online November 2, 2021; doi: 10.1130/G49426.1).

Peter Schultz of Brown University, USA and colleagues from the US and Chile make no dramatic claims for death and destruction or climate destabilisation, and simply report a fascinating discovery. In 2012 one of the authors, Nicolas Blanco of the Universidad Santo Tomás in Santiago, Chile, found slabs made of glassy material up to half a metre across. They occurred in several 1 to 3 km2 patches over a wide area of the Atacama Desert. Resting on Pleistocene glacio-fluvial sediments, they had been exposed by wind erosion of active sand dunes. The glass is dark green to brown and had been folded while still molten. For the glass slabs to be volcanic bombs presupposes a nearby volcano, but although Chile does have volcanoes none of the active vents are close enough to have flung such large lumps of lava into the glass-strewn area. The glassy material also contains traces of vegetation, and varies a great deal in colour (brown to green). Its bulk chemical composition suggests melting of a wide variety of surface materials: quite unlike volcanic glasses.

Chilean glass occurrence: panorama of large glass fragments in the Atacama Desert; a specimen of the glass; thin section of glass showing bubbles and dusty particles (Credit: Schultz et al. 2021; Figs 1B, 2D and 2C)

Microscopic examination of thin sections of the glasses also reveals nothing resembling lava, except for gas bubbles. The slabs are full of exotic fragments, some of which closely resemble mineral assemblages found in meteorites, including nickel-rich sulfides embedded in ultramafic material. Others are calcium-, aluminium- and titanium-rich inclusions, such as corundum (Al2O3) and perovskite (CaTiO3), thought to have originated as very-high temperature condensates from the pre-solar nebula: like the celebrated ‘white inclusions’ in the Allende meteorite. Some minute grains resemble dust particles recovered by the NASA Stardust mission to Comet 81P/Wild-2 which returned samples to Earth in 2006. Zircon grains in the glasses, presumed to be locally derived, have been decomposed to zirconium oxide (baddeleyite), suggesting melting temperatures greater than 1670°C: far above the highest temperature found in lavas (~1200°C). Interestingly, the green-yellow silica glass strewn over the Sahara Desert around the southern Egypt-Libya border also contains baddeleyite and cometary dusts, together with anomalously high platinum-group elements and nanodiamonds that are not reported from the Chilean glass. Much prized by the elite of pharaonic Egypt and earlier makers of stone tools, the Saharan glass is ascribed to shock heating of the desert surface by a cometary nucleus that exploded over the Sahara. Unsurprisingly, Schultz et al. come to the same conclusion.

Any object entering the Earth’s atmosphere does so at speeds in excess of our planet’s escape velocity (11.2 km s-1). Not only does that result in heating by friction with the air, but much of the kinetic energy of hypersonic entry goes into compressing air through shock waves, especially with objects larger than a few tens of metres. Such adiabatic compression can produce temperatures >>10 thousand °C. Hence the ‘fireballs’ associated with large meteorites. With very large air-bursts the flash of radiant energy would be sufficient to completely melt surface materials in microseconds, though rugged topography could protect areas shadowed from the air-burst by mountains, perhaps explaining the patchy nature of the glass occurrences.  (Note: the aforementioned papers on the YD and Sodom ‘air-bursts’ do not mention large glass fragments, whereas some surface melting would be expected). Some of the Chilean glass contains carbonised remnants of vegetation. Radiocarbon dating of four samples show that the glass formed at some time between 16.3 to 12.1 ka. Yes, that does include the age of the start of the YD (12.9 ka) and human migrants had established themselves in northern Chile and coastal Peru after 14.2 ka. Yet the authors, perhaps wisely, do no more than mention the coincidence, as well as that with the disappearance of South American Pleistocene megafaunas – more severe than on any other continent. With a very distinctive product, probably spanning a far larger area of South America, and attractive to humans as an ornament or a resource for sharp tools, expect follow-up articles in the future.

See also: http://www.sci-news.com/space/atacama-desert-comet-10247.html, Science News, 8 November 2021; Vast patches of glassy rock in Chilean desert likely created by ancient exploding comet, Eureka Alert, 2 November 2021.

A new, ‘bureaucratised’ hominin – Homo bodoensis

Palaeoanthropologists are in a bit of a muddle about the early humans of the Middle Pleistocene (~780 to 130 ka), namely Homo heidelbergensis and H. rhodesiensis. The first was defined in 1907 based on a massive lower jaw or mandible (but no cranium) found near Heidelberg in Germany. Fourteen years later a massively browed cranium (but no mandible) turned up near Kabwe in what is now Zambia (then Northern Rhodesia). That specimen became, in true colonialist fashion, H. rhodesiensis. Since then scientists have unearthed more such highly ‘robust’, ‘archaic’ remains in Africa, Asia and especially Europe: including at least 28 individuals in the Sima de los Huesos (‘pit of bones’), part of the World Heritage Site in the Atapuerca mountains of northern Spain. Do these widespread fossils really represent just two species or do specimens just happen to fit within two broadly similar morphological types? These days, most scientists experience discomfort with a reference to the legacy of Cecil Rhodes, so several sacks full of bones were metaphorically lumped into H. heidelbergensis. So widely dispersed are their sources and their ages covering such a wide span of time that the specimens might be expected contain a diverse range of genetic signatures. Yet only a single specimen from northern Spain, dated around 400 ka, has yielded DNA. The Sierra de Atapuerca provided an even more archaic European dated between 1.2 to 0.8 Ma (Early Pleistocene), from which dental proteins have been extracted. Comparative proteomics have encouraged H. antecessor to be considered as a possible common ancestor for anatomically modern humans (AMH), Neanderthals and Denisovans … and H. heidelbergensis.

A new, simplified model for the evolution of the genus Homo over the last 2 million years (Credit: Roksandic et al Fig 1)

A group of palaeoanthropologists has proposed a way to clear such muddy waters (Roksandic, M. & Radović, P. et al. 2021. Resolving the “muddle in the middle”: The case for Homo bodoensis sp. nov.. Evolutionary Anthropology, v. 30, early-release article 21929; DOI: 10.1002/evan.21929). Their device is to abolish the two previous species and lump together many human remains from the Middle Pleistocene of Africa into a new species named after the Bodo site in the Awash Valley of Ethiopia. It was there that a human cranium bearing characteristics similar to all the African specimens was found in 1976. Originally it was allocated to H. heidelbergensis, but now the composite group of archaic Middle Pleistocene Africans is proposed to be assigned to H. bodoensis. This composite species is also reckoned by the authors to be the ancestor of all surviving, anatomically modern humans. European examples of H. heidelbergensis are to be slotted into an early population of Neanderthals. Since the Denisovans of Asia are only known by DNA from tiny skeletal fragments, the taxonomic rearrangement logically should assign Asian archaic humans to early members of that mysterious but well-defined group. But a spanner in the works is that the sole example of H. heidelbergensis DNA (mitochondrial) – from northern Spain – more closely resembles Denisovans than it that of Neanderthals (see: Mitochondrial DNA from 400 thousand year old humans; Earth-logs December 2013).

There is also a bit of a problem with H. antecessor. There aren’t many specimens, and they are all from Atapuerca. Yet they are a plausible candidate, according to the proteomic analyses, for the most recent common ancestor (MRCA) of all subsequent humans (whatever taxonomists care to call them). But they do not fit in the taxonomic model suggested by Roksandic et al., who reject them as MRCA, on grounds that they are European. They consign them to an anomalous ‘spur’ that petred out in Spain while the real action was in Africa. So what happens if a cranium that bears close similarity to both H antecessor and H. bodoensis pops out of African Early Pleistocene sediments (older than about 700 ka)? There is at least one candidate from ~1 Ma sediments in Eritrea (Abbate, E. and 16 others 1998. A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea. Nature, v. 393, p. 458-460; DOI: 10.1038/30954), which is said to display ‘a mixture of characters typical of H. erectus and H. sapiens’. And there are others of that antiquity from Ethiopia.

Since the time of Charles Darwin there have been taxonomists who were (and are) either habitual ‘lumpers’ or ‘splitters’. There are more with a propensity for splitting because a new species carries the name of its initiator into posterity! So I expect the paper by Roksandic et al. to raise a cloud of academic dust. Yet taxonomic lumping has its stand-out species in the field of human evolution – H. erectus. A great many ‘archaic-looking’ human remains from the period after ~1.9 Ma until as recently as 200 ka have been dubbed ‘Erects’, giving the group an unsurpassed survival span of over a million years. A few early examples from Africa have been ‘split’ away to give H. ergaster, on taxonomic grounds that some palaeoanthropologists do not fully accept. Yet there are signs of later diversity that ‘splitters’ have, so far, not dared to slice-off from the mainstream consensus. So common are these ‘Erect’ fossils in China, that it is almost state policy that it was they who gave rise to living Han Chinese people! The lumpers are likely to hold sway in the absence of ancient DNA sequencing, which may never be possible outside temperate climates or for ages greater than that of the Spanish H. antecessor. With the knowledge that several anatomically very distinct hominin groups occupied the Earth together at several times in the last 300 ka – think H. floresiensis and H. naledi – it seems likely that the proposed pan-African H. bodoensis may not reflect past reality and the hypothesis needs considerably more testing

Earliest Americans and Denisovan art

It was Mary Leakey’s jaw-dropping discovery in the 1970s of the footprints of two adult Australopithecus afarensis and an accompanying juvenile in 3.6 Ma-old volcanic ash at Laetoli, Tanzania that provided the oldest palpable evidence of a bipedal hominin species. Just seeing a high-resolution image of this now legendary trackway made me determined to call my book on Earth and human evolution Stepping Stones: the Making of our Homeworld. Human footprints have figured several times in Earth-logs articles. A jumble of footprints in 1.0 to 0.78 Ma old Pleistocene interglacial sediments at Happisbugh on England’s Norfolk coast marks the presence there of Homo antecessor: the earliest known, northern Europeans. In The first volcanologists (March 2003) I noted the discovery of evidence that Neanderthal children played in 350 ka volcanic ash on the Roccamonfina volcano in Italy. The emotion generated by seeing such relics has never left me. Two similarly important proofs of human presence emerged in September 2021.

Footprints thought to have been made by children and teenagers between 23 and 21 thousand years ago in lake shore muds at White Sands, New Mexico. (Credit Bennett et al. 2021)

Since 2011 a variety of evidence has accumulated that the Americas began to be populated by anatomically modern humans before what had long been assumed to be the ‘first arrivals’: the Clovis people who made finely-worked stone spear points first found in 13 ka-old sediments in New Mexico. To the pre-Clovis artefacts that suggested earlier immigrations have been added indisputable signs of human presence even earlier than anticipated. They were uncovered in lake sediments beneath the gypsum sand dunes of White Sands National Park in New Mexico. The site is not far from where Robert Oppenheimer exclaimed to himself ‘Now I am become Death, the destroyer of worlds’ after he witnessed his creation, the first detonation of a nuclear weapon on 9 July 1945. These lake sediments have yielded thousands of human and animal footprints over the years, but the latest have been dated at between 23 to 21 ka (Bennett, M.R. and 13 others 2021. Evidence of humans in North America during the Last Glacial Maximum. Science, v. 373, p. 1528-1531; DOI: 10.1126/science.abg7586). As with the Happisburgh and Roccamonfina human trackways, size analysis suggests that they were made mainly by children and teenagers! Other animal trackways show that the lake edge was teeming with game at the height of the last Ice Age: abundant food for hunter-gatherers generally results in lots of free time. So maybe these early American people were having fun too. When ice sheets were at their maximum extent sea level had fallen, leaving the Bering Strait dry. The broad Beringia land-bridge made the Americas accessible from Eurasia. Whatever objections have previously been raised as regards human penetration south from Alaska during the Last Glacial Maximum, the White Sands find sweeps them away; people overcame whatever obstacles there were.

Travertine outcrop covered with hand- and footprints at Quesang on the Tibetan Plateau (Credit: Zhang et al., Fig. 1c)

Much older footprints and handprints, preserved in a biogenic carbonate (travertine) deposit from the Tibetan Plateau – more than 4,000 metres above sea level – are reported in an article soon to be published by Elsevier (Zhang, D.D. and 17 others 2021. Earliest parietal art: hominin hand and foot traces from the middle Pleistocene of Tibet, Science Bulletin v 66 online; DOI: 10.1016/j.scib.2021.09.001). Travertine forms when calcium carbonate is precipitated from lime-rich spring water onto films of algae or bacteria. At first it is soft and spongy, hardening as more carbonate is precipitated and solidifying when dried out to form a porous rock. People made a jumble of prints when they pressed their hands and feet into the originally spongy biofilm. Three-dimensional images of the slab provide the basis for interpreting how the prints were made. There are 5 handprints and 5 footprints. From comparing their sizes with modern humans’ feet and hands, it seems that the handprints were made by a single 12-year-old, and the footprints by a child of about 7. Although the travertine layer would have been steep and slippery none of the prints show signs of falling or sliding. They seem to have been deliberately placed close to one another, with suggestions that at least one thumb was wiggled. The authors argue that the prints are a form of art similar to the hand stencils commonly seen on Palaeolithic cave walls. It could be that a couple of kids took delight in leaving signs that they had been there, ‘messing around’: but still an art form. What is especially exciting is their age, between 169 and 226 ka. The children are unlikely to have been anatomically modern humans, who first reached Tibet only a little before 21 ka. One alternative is that they were Denisovans (see: Denisovan on top of the world, May 2019.

See also: Bennett, M.R. 2021.  Fossil footprints prove humans populated the Americas thousands of years earlier than we thought. The Conversation, 23 September 2021. 2021Metcalf, T. 2021. Art or not? Ancient handprints spark debate. NBC News, 16 September 2021.

Opportunities for anatomically modern humans to have left Africa

Key ages of early H. sapiens, Neanderthals and Denisovans (credit: Delson, 2019; Fig. 1)

For almost 2 million years humans have migrated long distances, the earliest example of a move out of Africa being the Georgian Homo erectus specimens (see: First out of Africa? November 2003). As regards H. sapiens – anatomically modern humans (AMH) – the earliest fossils, found at Jebel Irhoud in Morocco, are about 300 ka old. By 260 ka they were present at several sites that span the African continent. The first sign of AMH having left Africa are fossils found at Mislaya in Israel and Apidima in Greece – dated to 177 and 210 to 170 ka respectively – and 125 ka-old tools tentatively attributed to AMH in the Arabian Peninsula (see: Arabia : staging post for human migrations?, September 2014). There is also genetically dated evidence of geneflow from Homo sapiens into Neanderthal DNA between 130 to 250 ka ago. The evidence for an early ‘Out of Africa’ migration by AMH is concrete but very sparse, a fuller story of our permanently colonising all habitable parts of the world only emerging for times after about 65 ka.

It is easy to appreciate that the main hindrance for palaeo-anthropological research into human migration centres on the issue of where to look for evidence, a great many discoveries owing more to luck than to a strategic approach. And, of course, once interesting sites are found researchers congregate there. There is a limited number of active palaeoanthropologists of whom only a proportion engage regularly in field exploration. And there is also an element of the old gold prospectors adage: ‘If you want to find elephants, go to elephant country’! But there are other issues connected with discoveries. When was it possible for AMH to make transcontinental journeys and what routes would have been feasible from time to time? Robert Beyer of the Cambridge University with scientists from New Zealand, Estonia and the UK have devised a rational approach to the questions of optimum times and routes for major migration (Beyer, R.M., et al. 2021. Climatic windows for human migration out of Africa in the past 300,000 yearsNature Communications, v.  12, article 4889; DOI: 10.1038/s41467-021-24779-1). Just two routes out of Africa have been considered feasible: by crossing the Strait of Bab el Mandab from Djibouti and southern Eritrea to the Yemen, and following the Nile northwards to access Eurasia via the Levant. The first depends to some extent on how wide the Strait was; depending on sea level fluctuations, it has varied from 4 to 20 km during the last 300 ka. Exit by way of both routes would also have depended on vegetation, game and drinking water supplies that varying amounts of rainfall would have supported.

Assessing the feasibility of crossing the southern Red Sea at different times is fairly easy. Sea level fluctuates according to the amount of water locked in the ice caps of Antarctica and Greenland and on the land glaciated during ice ages in northern North America and Scandinavia. Oxygen isotopes in Pleistocene sea-floor sediments and today’s ice caps reveal that variation. Being one of the world’s most important seaways the bathymetry of the Red Sea is known in considerable detail. At present the minimum sea distance needed to cross the Strait of Bab el Mandab is about 21 km. At the lowest sea levels during the Pleistocene the sea journey was reduced to slightly less than 5 km, which would not have required sophisticated boats or seafaring skills. There is evidence that AMH and earlier humans occupied the western shore of the Red Sea to use its rich marine resources, but none for boats or for habitation of the Yemeni coastline. However, calculations by Beyer et al. of sea level fluctuations during the last 300 ka show that for more than half that time the sea crossing was less than 7 km thanks to a shallow continental shelf and a very narrow stretch of deep water. Clearly the varying width of the Strait is not a useful guide to windows of opportunity for migration via that route. Except for warm interglacials and a few interstadials, people could have crossed at any time provided that the ecosystems on either side could sustain them.

Annual precipitation during each millennium of the Late Pleistocene for the two most likely out-of-Africa routes. The double green lines show the lower level of tolerance for hunter gatherers. The percentage of decades during which ANH could sustain themselves is colour-coded in blues. (Credit: Beyer et al. Fig 2)

Turning to climatic fluctuations, especially that of rainfall, Beyer et al. first estimated the lowest rainfall that hunter-gatherers can survive from the distribution of surviving groups according to annual precipitation and the biomass of grazing prey animals in their habitats. The lower limit is about 90 mm per year. Using the climate record for the Late-Pleistocene from proxies, such as oxygen isotopes, in global climate modelling produces a series of high-resolution ‘time-lapse snapshots’ of conditions in the geographic areas of interest – the Nile-Levant route and that from the Horn of Africa to Yemen. The results are expressed as the percentage of decades in each thousand-year interval that hunter-gatherers could sustain themselves under prevailing climatic conditions in the two regions. What seems clear from the figure (above) is that the southern, Bab el Mandab route had considerable potential for AMH migrants. The northern one looks as if it was more risky, as might be expected from today’s dominant aridity away from the Mediterranean and Gulf coasts. The northern route seems to have been just about feasible for these periods: 245-230; 220-210; 206-197; 132-94; 85-82; ~75 and ~72 ka. The climatic windows for possible migration via the southern route are: ~290; 275-240 (with optimums at ~273, ~269, ~246 and ~243); 230-210; 203-200; 182-145; 135-118; 112; 107; 70-30; 18-13 ka. The well documented beginning of major AMH migration into Eurasia was around 75 to 60 ka, which the southern route would most favour on climatic grounds. Yet before that there are many possibilities involving either route. Any AMH finds outside Africa before 250, and between 190-133 ka seem almost certain to have been via the southern route, based on arid conditions in the north. But, of course, there would have been other factors at play encouraging or deterring migration via either route. So perhaps not every climatic opportunity was exploited.

Beyer and colleagues have provided a basis for plenty of discussion and shifts in focus for future palaeo-anthropological work. One thing to bear in mind is that different humans may also have taken up the opportunities; for example, some Neanderthals are now suspected to have migrated back to Africa in the last 300 ka.

See also: Groucutt, H.S  and 22 others 2021. Multiple hominin dispersals into Southwest Asia over the past 400,000 years. Nature, ; DOI: 10.1038/s41586-021-03863-y

Massive hominin skull from China: is it a Denisovan?

In 1933 labourers unearthed a very large skull during the construction of a bridge near Harbin, Northern China. At that time, the area was under occupation by Imperial Japanese forces. To keep it out of the invaders’ hands the skull was quickly wrapped in a cloth and hidden in an old well. It was only in 2018 that the original finder’s grandson recovered it to pass on to archaeologists at  Hebei Geo University. It lacks a lower jawbone, so technically it is a cranium, but is very well preserved. The face has very large brow ridges – generally taken as a primitive feature – but also some more modern features. With a 1,420 ml brain case, it is significantly larger than most modern human crania. Apparently, it is of an adult male. As well as a big head, he had a large nose, as do Neanderthals: a possible adaptation to very cold conditions. Without waiting to see if the bones might yield DNA, five of the team who examined the cranium claimed it as a new species, Homo longi or ‘Dragon Man’; i.e. distinct from modern humans and Neanderthals and all known older hominins (Ni, X. et al. 2021. Massive cranium from Harbin establishes a new Middle Pleistocene human lineage in China. The Innovation, v. 2, article 100130; DOI: 10.1016/j.xinn.2021.100130. Ji, Q. et al. 2021. Late Middle Pleistocene Harbin cranium represents a new Homo species. The Innovation, v. 2, article 100132; DOI: 10.1016/j.xinn.2021.100132). They based this phylogenetic interpretation on morphology alone. At least one of the team, Chris Stringer a leading hominin palaeoanthropologist at The Natural History Museum in London, demurred. The cranium is not unique and bears close similarity to another from the central Chinese province of Shaanxi, which was found in the late 1970s. In fact there are three other Chinese crania that resemble that from Harbin, although they are less well preserved.

All-sided views of the Harbin cranium. (Credit: Ni et al., Fig 2)

Dating the fossil was not easy, as the site where labourers discovered him was destroyed during construction of the bridge. Researchers used a variety of geochemical analyses, including from sediment stuck in his nasal cavity, to derive a likely stratigraphic profile from which the cranium may have been excavated. The best fit is with Middle Pleistocene sediments in the Harbin area. Uranium-series dating of the bone suggests that it is older than 146 ka (Shao, Q.  et al. 2021. Geochemical locating and direct dating of the Harbin archaic human craniumThe Innovation, v. 2, article 100131; DOI: 10.1016/j.xinn.2021.100131). So it is likely that this man and his companions did not cohabit China with anatomically modern humans, who arrived no more than about 50 ka ago. The highly robust nature of all the similar crania suggests that the individuals must have been large and physically active. Like the Neanderthals, they had adapted to harsh conditions over several hundred thousand years of repeated climate change. Even today, winters in northern China average around -16°C, and far inland conditions are semi-arid to arid. For them to migrate would have involved traversing some of highest, bleakest passes in the world. These people evolved to survive extreme climatic and environmental change, much as did the Neanderthals in West Asia and Europe. By comparison anatomically modern humans evolved in the more stable environments of Africa and the Middle East, surviving only the last ice age once they had migrated northwards. Those who made it to northern Siberia and crossed the Bering Strait via Beringia around the last glacial maximum did evolve physical traits that helped them survive, but minor ones compared with the earlier humans.

So what do these Chinese fossils represent? Using cranial features alone to propose distinct species smacks of the techniques of 19th and early 20th century anatomical anthropologists, albeit with powerful statistical analysis. We know that anatomically modern humans carry genetic signatures of interbreeding with at least two known ‘species’ with whom they cohabited Eurasia – Neanderthals and Denisovans. Indeed, traces in  the DNA of living African and Eurasian humans hint at other unknown and probably very ancient ‘ghost’ populations. Genetic, physical and probably cultural differences did not deter repeated interbreeding with these ‘others’. To be frank, erecting new human ‘species’ these days seems to serve little purpose. ‘Dragon Man’ is just as likely to represent the Denisovans as the fully sequenced DNA from a couple of bones from caves in Siberia and Tibet. The latter matched stretches of the DNA from living people of East Asia and parts of the Pacific. There are no other such live genetic tracers awaiting a different candidate to fill the role that we know Neanderthals and Denisovans to have filled. That may yet change, but the first job for the mainly Chinese consortium of scientists is to get genetic material from these crania and sequence it, or invite other highly successful palaeogeneticists who would leap at the opportunity.

See also: Jones, N. 2021. Mysterious skull fossils expand human family tree — but questions remain. Nature, v. 595, p. 50; DOI: 10.1038/d41586-021-01738-w

Sample I. 2021. Massive human head in Chinese well forces scientists to rethink evolution. The Guardian, 25 June 2021.

The early signs of counting and arithmetic?

Three earlier articles in Earth-logs originally focussed on what I supposed to be ‘ancient abstract art’.  One highlighted a clam shell that bears carefully etched V-shapes found at the type locality for Asian Homo erectus at Trinil on the Solo River, Java, dated between 430 and 540 ka. Another is about parallel lines etched on a piece of defleshed bone from China dated at 78 to 123 ka, which may be a Denisovan artefact. The most complex is a piece of ochre found in the coastal Blombos Cave 300 km east of Cape Town, South Africa in association with tools ascribed to early modern humans who lived there about 73 ka ago. Fascinating as they seemed at the time, they may hold much greater significance about early-human cognitive powers than about mere decoration. That is thanks to recent evaluation of other simple artefacts made of lines and notches by anthropologists, cognitive scientists and psychologists. Their work is summarised in a recent Nature Feature by Colin Barras (Barras, C. 2021. How did Neanderthals and other ancient humans learn to count? Nature, v. 594, p. 22-25; DOI: 10.1038/d41586-021-01429-6). The European Research Council recently allocated a €10 million grant to foster research into ‘when, why and how number systems appeared and spread’.

Examples of ancient ‘abstract’ art. Top – V-shaped features inscribed on 430-540 ka freshwater clam from Java; Middle – parallel lines etched through red ochre to show white bone, from a possible Denisovan site in China; Bottom – complex inscription on a tablet of iron-rich silcrete from South Africa

Straight lines and patterns made from them are definitely deliberate, whatever their antiquity. In recent times, such devices have been used by artists to render mental images, moods and thoughts as simplified abstractions: hence ‘abstract’ art, such as that of Piet Mondrian and Kazimir Malevich. The term also applies to the dribbles and drabbles of Jackson Pollock and many more styles. But these works are a very recent evolutionary development out of earlier schools of art. So deliberate geometric shapes and arrangements of lines that are many millennia old cannot simply be termed ‘abstract art’. It is certainly not easy to see how they evolved into the magnificence of Palaeolithic figurative cave art that started at least 40 thousand years ago; Yet they are not ‘doodles’. Being so deliberate suggests that they represented something to their makers. The question is, ‘What?’

The research summarised by Barras is mainly that of Francisco d’Errico of The University of Bordeaux, France and colleagues from Canada and Italy (d’Errico, F. et al. 2018. From number sense to number symbols. An archaeological perspective. Philosophical Transactions of the Royal Society B, v. 373, article 2160518; DOI: 10.1098/rstb.2016.0518). They focused their work on two remarkable artefacts. The oldest (72 to 60 ka), from a cave near Angoulême in France, is a fragment of a hyena’s thigh bone that carries nine notches. It is associated with stone tools almost certainly made by Neandethals. The other, from the Border Cave rock shelter in KwaZulu-Natal in South Africa, is a 44 to 42 ka old baboon’s shin bone, which carries a row of 29 prominent notches, and a number of less distinct, roughly parallel scratches. The rock shelter contains remains of anatomically modern humans and a very diverse set of other artefacts that closely resemble some used by modern San people.

Top: notched hyena femur bone fragment associated with Neanderthal tools from SW France. Bottom: notched baboon shin bone from Border Cave, South Africa. Scale bars(Credit: F. d’Errica and L. Backwell)

Microscopic examination of the notches made by a Neanderthal suggest that all 9 notches were cut at the same time, using the same stone blade. Those on the Border Cave shin bone suggest that they were made using four distinctly different tools on four separate occasions. Are both objects analogous to tally sticks; i.e. to count or keep a record of things as an extension to memory? There are other known examples, such as a 30 ka-old  wolf’s radial bone from the Czech Republic having notches in groups of five, suggesting a record of counting on fingers. Yet very similar devices, made in recent times by the original people of Australia, were not used for keeping count, but to help travellers commit a verbal message to memory enabling them to recount it later.

Do read Barras’s summary and the original paper by d’Errico et al. to get an expanded notion of the arguments being debated. They emerge from the truly novel idea that just because the makers of such objects lived tens or even hundreds of thousands of years ago that doesn’t make them intellectually lacking. Imagining in the manner of Victorian scientists that ancient beings such as Neanderthals and H. erectus must have been pretty dim is akin to the prejudice of European colonialists that people of colour or with non-European cultures were somehow inferior, even non-human. To me it is admirable that the European Research Council has generously funded further research in this field at a time when research funding in the UK, especially for the disciplines involved, has been decimated by those who demanded an exit from the EU.

The older Trinil and Blombos patterns appear yet more sophisticated. The pattern on the latter looks very like the kind of thing that someone in a prison cell might draw to keep track of time. It also incorporates the zig-zag element engraved on the Trinil clam shell. Remember that the word ‘Exchequer’ is derived from a tax audit during the reign of Henry I of England that was conducted on a counting board whose surface had a checked pattern

CSI and detecting the presence of ancient humans

Enter a room, even for a few minutes, and dead skin cells will follow you like an invisible cloud to settle on exposed surfaces. Live there and a greyish white, fluffy dust builds up in every room. Even the most obsessive cleaning will not remove it, especially under a bed or on the bathroom floor. Consider a cave as a home, but one without vacuum cleaners, any kind of sanitation, paper tissues, panty liners, nappies or wet wipes. For pre-modern human dwellings can be added snot, fecal matter, sweat, urine, menstrual blood and semen among all the other detritus of living. A modern crime-scene investigator would be overwhelmed by the sheer abundance of DNA from the host of people who had once dwelt there. CSI works today as much because most homes are pretty clean and most people are fastidious about personal hygene as because of the rapidly shrinking lower limit of DNA detection of the tools at its disposal. Except, that is, when someone from outside the home commits a criminal offence: burglary, GBH, rape, murder. We have all eagerly watched ‘police operas’ and in the absence of other evidence the forensic team generally gets its perpetrator, unless they did the deed wearing a hazmat suit, mask, bootees and latex gloves.

Artistic impression of Neanderthal extended-family life in a cave (credit: Tyler B. Tretsven)

Since 2015 analysis of environmental DNA from soils has begun to revolutionise the analysis of ancient ecosystems, including the living spaces of ancient humans (see: Detecting the presence of hominins in ancient soil samples, April 2017). It is no longer necessary to find tools or skeletal remains of humans to detect their former presence and work out their ancestry. DNA sequencing of soil samples, formerly discarded from archaeological sites, can now detect former human presence in a particular layer, as well as that of other animals. In many cases the ‘signal’ pervades the layer rather than occurring in a particular spot, as expected from shed skin cells and bodily fluids. The first results were promising but only revealed mitochondrial DNA. Now the technique has extended to nuclear DNA: the genome (Vernot, B. and 33 others 2021. Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments. Science, v. 372, article eabf1667; DOI: 10.1126/science.abf1667). Benjamin Vernot and colleagues from 7 countries collected and analysed cave soils from three promising sites with tangible signs of ancient human occupation. Two of them were in Siberia and had previously yielded Neanderthal and Denisovan genomes from bones. The other is part of the Atapuerca cave complex of NW Spain that had not. The Russian caves yielded DNA from more than 60 samples, 30 being nuclear DNA consistent with that from actual Neanderthal and Denisovan bones found in the caves. Galería de las Estatuas cave in Spain presented a soil profile spanning about 40 thousand years from 112 to 70 ka.

Teasing-out nuclear DNA from soil is complicated, from both technical and theoretical standpoints. So being able to match genomes from soil and bone samples in the Russian caves validated the methodology. The Spanish samples could then be treated with confidence. Galería de las Estatuas revealed the presence of Neanderthals throughout its 40 ka soil profile, but also a surprise. The older DNA was sufficiently distinct from that from later levels to suggest that two different populations had used the cave as a home, the original occupants being replaced by another genetically different group around 100 to 115 ka ago. The earlier affinity was with the ancestors of sequenced Neanderthal remains from Belgium, the later with those from Croatia. That time is at the end of the last (Eemian) interglacial episode, so one possibility is a population change driven by climatic deterioration. This success is sure to encourage other re-examinations of caves all over the place. That is, if there is the analyical capacity to perform such painstaking work in greater volume and at greater pace. Like many other palaeo-genomic studies, this one has relied heavily on the analytical facilities pioneered and developed by Svante Paäbo at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. Covid has forced genetics to the front page for a year and more. And it has led to many advances in anlytical techniques, particularly in their speed. It would nice to think that a dreadful experience may end-up with positive benefits for understanding the full history of humanity.

Relationships between modern humans and Neanderthals

Before 40 thousand years (ka) ago Europe was co-occupied by Neanderthals and anatomically modern humans (AMH) for between five to seven thousand years; about 350 generations – as long as the time since farming began in Neolithic Britain to the present day. Populations of both groups were probably low given their dependence on hunting and foraging during a period significantly colder than it is now. Crude estimates suggest between 3,000 to 12,000 individuals in each group; equivalent to the attendance at a single English Football League 2 match on a Covid-free winter Saturday afternoon. Moving around Europe south of say 55°N, their potential range would have been around 5 million square kilometres, which very roughly suggests that population density would be one person for every 200 km2. That they would have moved around in bands of, say, 10 to 25 might seem to suggest that encounters were very infrequent. Yet a hybrid Neanderthal-Denisovan female found in Siberia yielded DNA that suggested a family connection with Croatia, 5,000 km away (see: Neanderthal Mum meets Denisovan Dad, August 2018); early humans moved far and wide.

The likely appearances of Neanderthals and anatomically modern humans when they first met between 50 and 40 thousand years ago. (Credit: Jason Ford, New York University)

A sparsely populated land can be wandered through with little fear other than those of predators, sparse resources or harsh climate and lack of shelter. But it still seems incredible for there to have been regular meetings with other bands. But that view leaves out knowledge of good places to camp, hunt and forage that assure shelter, water, game and so forth, and how to get to them – a central part of hunter-gatherers’ livelihoods. There would have been a limited number of such refuges, considerably increasing chances of meeting. Whatever the physiognomic differences between AMH and Neaderthals, and they weren’t very striking, meeting up of bands of both human groups at a comfortable campsite would be cause for relief, celebration, exchanges of knowledge and perhaps individuals of one group to partner members of the other.

As well as that from Neanderthals, ancient DNA from very early European AMH remains has increasingly been teased out. The latest comes from three individuals from Bacho Kiro Cave in Bulgaria dated to between 45.9 to 42.6 ka; among the earliest known, fully modern Europeans. One had a Neanderthal ancestor less than six generations removed (perhaps even a great-great grandparent 60 years beforehand). Because of the slight elapsed time, the liaison was probably in Europe, rather than in the Middle East as previously suggested for insertion of Neanderthal genes into European ancestry. The genetic roots of the other two families stemmed back seven to ten generations – roughly 100 to 150 years (Hajdinjak, M. and 31 others 2021. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestryNature, v. 592, p. 253–257; DOI: 10.1038/s41586-021-03335-3). The interpretation of these close relationships stems from the high proportion of Neanderthal DNA (3 to 4 %) in the three genomes. The segments are unusually lengthy, which is a major clue to the short time since the original coupling; inherited segments tend to shorten in successive generations. The groups to which these AMH individuals belonged did not contribute to later Eurasian populations, but link to living East Asians and Native Americans. They seem to have vanished from Europe long before modern times. The same day saw publication of a fourth instance of high Neanderthal genetic content (~3 %) in an early European’s genome, extracted from a ~45 ka female AMH from Zlatý kůň (Golden Horse) Cave in Czechia (Prüfer, K. and 11 others 2021. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nature Ecology & Evolution  DOI: 10.1038/s41559-021-01443-x). In her case, too, the Neanderthal DNA segments are unusually lengthy, but indicate 70 to 80 generations (~2,000 to 3,000 years) had elapsed. Her DNA also suggests that she was dark-skinned and had brown hair and brown eyes. Overall her genetics, too, do not have counterparts in later European AMH. The population to which she belonged may have migrated westwards from the Middle East, where one of her ancestors had mated with a Neanderthal, perhaps as long as 50 ka ago. But that does not rule out her group having been in Europe at that time. A later modern human, dated at 42 to 37 ka, is a young man from the Petştera cu Oase cave in Romania, whose forbears mixed with Neanderthals. His genome contains 6.4% of Neanderthal DNA, suggesting that his Neanderthal ancestor lived a mere 4 to 6 generations earlier, most likely in Europe, and was perhaps one of the last of that group.

The data suggest that once modern humans came into contact with their predecessors in the Middle East and Europe, mixture with Neanderthals was ‘the rule rather than the exception’. Yet their lack of direct relationship to later Europeans implies that AMH colonisation of Europe occurred in successive waves of people, not all of whom survived. As Palaeolithic specialist Chris Stringer of the Natural History Museum in London cautions, of these multiple waves of incomers ‘Some groups mixed with Neanderthals, and some didn’t. Some are related to later humans and some are not’. Even five thousand years after ‘first contact’, relations of modern humans with Neanderthals remained ‘cordial’, to say the least, including with the last few before their extinction.

See also: Gibbons, A. 2021. More than 45,000 years ago, modern humans ventured into Neanderthal territory. Here’s what happened next. Science, v. 372, News article; DOI: 10.1126/science.abi8830. Callaway, E. 2021. Oldest DNA from a Homo sapiens reveals surprisingly recent Neanderthal ancestry. Nature, v. 592, News article; DOI: 10.1038/d41586-021-00916-0. Genomes of the earliest Europeans (Science Daily, 7 April 2021). Bower, B. 2021 Europe’s oldest known humans mated with Neandertals surprisingly often (ScienceNews, 7 April 2021)