
Michael Rampino has produced a new book (Rampino, M.R. 2017. Cataclysms: A New Geology for the Twenty-First Century. Columbia University Press; New York). As the title subtly hints, Rampino is interested in mass extinctions and impacts; indeed quite a lot more, as he lays out a hypothesis that major terrestrial upheavals may stem from gravitational changes during the Solar System’s progress around the Milky Way galaxy. Astronomers reckon that this 250 Ma orbit involves wobbling through the galactic plane and possibly varying distributions of mass – stars, gas, dust and maybe dark matter – in a 33 Ma cycle. Changing gravitational forces affecting the Solar System may possibly fling small objects such as comets and asteroids towards the Earth on a regular basis. In the 1980s and 90s Rampino and others linked mass extinctions, flood-basalt outpourings and cratering events, with a 27 Ma periodicity. So the books isn’t entirely new, though it reads pretty well.
Such ideas have been around for decades, but it all kicked off in 1980 when Luis and Walter Alvarez and co-workers published their findings of iridium anomalies at the K-Pg boundary and suggested that this could only have arisen from a major asteroid impact. Since it coincided with the mass extinction of dinosaurs and much else besides at the end of the Cretaceous it could hardly be ignored. Indeed their chance discovery launched quite a bandwagon. The iridium-rich layer also included glass spherules, shocked mineral grains, soot and other carbon molecules –nano-scale diamonds, nanotubes and fullerenes whose structure is akin to a geodesic dome – and other geochemical anomalies. Because the Chicxulub crater off the Yucatán Peninsula of Mexico is exactly the right age and big enough to warrant a role in the K-Pg extinction, these lines of evidence have been widely adopted as the forensic smoking gun for other impacts. In the last 37 years every extinction event horizon has been scrutinized to seek such an extraterrestrial connection, with some success, except for exactly coincident big craters.
The K-Pg event is the only one that shows a clear temporal connection with a small mountain falling out of the sky, most of the others seeming to link with flood basalt events and their roughly cyclical frequency – but hence Rampino’s Shiva hypothesis that impacts may have caused the launch of mantle plumes from the core-mantle boundary. Others have used the ‘smoking gun’ components to link lesser events to a cosmic cause, the most notorious being the 2007 connection to the extinction of the North American Pleistocene megafauna and the start of the Younger Dryas return of glacial conditions. Since 1980 alternative mechanisms for producing most of the impact-connected materials have been demonstrated. It emerged in 2011 that nano-diamonds and fullerenes may form in a candle flame and their global distribution could be due to forest fires. And now it seems that shocked mineral grains can form during a lightning strike (Chen, J. et al. 2017. Generation of shock lamellae and melting in rocks by lightning-induced shock waves and electrical heating. Geophysical Research Letters, v. 44, p. 8757-8768; doi:10.1002/2017GL073843). Shocked or not, quartz and feldspar grains are resistant enough to be redistributed into sediments. Although platinum-group metals, such as iridium, are likely to be mainly locked away in Earth’s core, some volcanic exhalations and many flood basalts – especially those with high titanium contents – significantly are enriched in them. So even the Alvarez’s evidence for a K-Pg impact has an alternative explanation. Rampino is to be credited for acknowledging that in his book.
An awful lot of ideas about rare yet dreadful events in the biosphere depend, like many criminal cases, on the ‘weight of evidence’ and defy absolute proof. The evidence generally permits alternatives, such the cunning Verneshot hypothesis for the extinction-flood basalt connection supported by one of the founders of plate tectonics, W. Jason Morgan. As regards The K-Pg extinction, it is certain that a very large mass did fall on Chicxulub at the time of the mass extinction, whereas the Deccan flood basalts span a million years or so either side. But the jury is out on whether either or both did the deed. For other events of this scale and larger ones the money is on internal origins. As for Rampino’s galactic hypothesis, the statistics are decidedly dodgy, but chasing down more forensics is definitely on the cards.
