Ordovician ice age: an extraterrestrial trigger

The Ordovician Period is notable for three global events; an explosion in biological diversity; an ice age, and a mass extinction. The first, colloquially known as the Great Ordovician Biodiversification Event, occurred in the Middle Ordovician around 470 Ma ago (see The Great Ordovician Diversification, September 2008) when the number of recorded fossil families tripled. In the case of brachiopods, this seems to have happened in no more than a few hundred thousand years. The glacial episode spanned the period from 460 to 440 Ma and left tillites in South America, Arabia and, most extensively, in Africa. Palaeogeographic reconstructions centre a Gondwanan ice cap in the Western Sahara, close to the Ordovician South Pole. It was not a Snowball Earth event, but covered a far larger area than did the maximum extent the Pleistocene ice sheets in the Northern Hemisphere. It is the only case of severe global cooling bracketing one or the ‘Big Five’ mass extinctions of the Phanerozoic Eon. In fact two mass extinctions during the Late Ordovician rudely interrupted the evolutionary promise of the earlier threefold diversification, by each snuffing-out almost 30% of known genera.

ord met
L-chondrite meteorite in iron-stained Ordovician limestone together with a nautiloid (credit: Birger Schmitz)

A lesser-known feature of the Ordovician Period is a curious superabundance of extraterrestrial debris, including high helium-3, chromium and iridium concentrations, preserved in sedimentary rocks, particularly those exposed around the Baltic Sea (Schmitz, B. and 19 others 2019. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Science Advances, v. 5(9), eaax4184; DOI: 10.1126/sciadv.aax4184). Yet there is not a sign of any major impact of that general age, and the meteoritic anomaly occupies a 5 m thick sequence at the best studied site in Sweden, representing about 2 Ma of deposition, rather than the few centimetres at near-instantaneous impact horizons such as the K-Pg boundary. Intact meteorites are almost exclusively L-chondrites dated at around 466 Ma. Schmitz and colleagues reckon that the debris represents the smashing of a 150 km-wide asteroid in orbit between Mars and Jupiter. Interestingly, L-chondrites are more abundant today and in post-Ordovician sediments than they were in pre-Ordovician records, amounting to about a third of all finds. This suggests that the debris is still settling out in the Inner Solar System hundreds of million years later. Not long after the asteroid was smashed a dense debris cloud would have entered the Inner Solar System, much of it in the form of dust.

The nub of Schmitz et al’s hypothesis is that considerably less solar radiation fell on Earth after the event, resulting in a sort of protracted ‘nuclear winter’ that drove the Earth into much colder conditions. Meteoritic iron falling the ocean would also have caused massive phytoplankton blooms that sequestered CO2 from the Ordovician atmosphere to reduce the greenhouse effect. Yet the cooling seems not to have immediately decimated the ‘booming’ faunas of the Middle Ordovician. Perhaps the disruption cleared out some ecological niches, for new species to occupy, which may explain sudden boosts in diversity among groups such as brachiopods. Two sharp jumps in brachiopod species numbers are preceded and accompanied by ‘spikes’ in the number of extraterrestrial chromite grains in one Middle Ordovician sequence. One possibility, suggested in an earlier paper (Schmitz, B. and 8 others 2008. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geoscience, v. 1, p. 49-53; DOI: 10.1038/ngeo.2007.37)  is that the undoubted disturbance may have killed off species of one group, maybe trilobites, so that the resources used by them became available to more sturdy groups, whose speciation filled the newly available niches. Such a scenario would make sense, as mobile predators/scavengers (e.g. trilobites) may have been less able to survive disruption, thereby favouring the rise of less metabolically energetic filter feeders (e.g. brachiopods).

See also: Sokol, J. 2019. Dust from asteroid breakup veiled and cooled Earth. Science, v. 365, pp. 1230: DOI: 10.1126/science.365.6459.1230, How the first metazoan mass extinction happened (Earth-logs, May 2014)

Neanderthal demographics and their extinction

About 39 thousand years ago all sign of the presence of Neanderthal bands in their extensive range across western Eurasia disappears. Their demise occurred during a period of relative warmth (Marine-Isotope Stage-3) following a cold period at its worst around 65 ka (MIS-4). They had previously thrived since their first appearance in Eurasia at about 250 ka, surviving at least two full glacial cycles. Their demise occurred around 5 thousand years after they were joined in western Eurasia by anatomically modern humans (AMH). During their long period of habitation they had adapted well to a range of climatic zones from woodland to tundra. During their overlap both groups shared much the same food resources, dominated by large herbivores whose numbers burgeoned during the warm period, with the difference that Neanderthals seemed to have depended on ranges centred on fixed sites of habitation while AMH maintained a nomadic lifestyle. Having shared a common African ancestry about 400 thousand years ago, DNA studies  have revealed that the two populations interbred regularly, probably in the earlier period of overlap in west Asia from around 120 thousand years ago and possibly in Europe too after 44 ka. Considering their previous tenacity, how the Neanderthals met their end is something of a mystery. It may have been a result of competition for resources with AMH, which could be countered by the increase in food resources. Maybe physical conflict was involved, or perhaps disease imported with AMH from warmer climes. Genetic absorption through interbreeding of a small population with a larger one of AMH is a possibility, although DNA evidence is lacking. An inability to adapt to climate change contradicts the Neanderthals long record and their disappearance during MIS-3. Previous population estimates of changing Neanderthal populations in the Iberian Peninsula (see Fig. 2 in Roberts, M.F. & Bricher, S.E 2018. Modeling the disappearance of the Neanderthals using principles of population dynamics and ecology. Journal of Archaeological Science, v. 100, p.16-31; DOI: 10.1016/j.jas.2018.09.012) show decline from about 70,000 to 20,000 before MIS-4, then recovery to about 40,000 before the arrival of AMH at 44 ka followed by a decline to extinction thereafter. Roberts and Bricher developed a model for investigating demographics from archaeological evidence that is neutral as regards any particular hypothesis for Neanderthal extinction.

Nea family
Artistic reconstruction of Neanderthal family group (credit: Nikola Solic, Reuters)

Continue reading “Neanderthal demographics and their extinction”

Pleistocene megafaunal extinctions – were humans to blame?

Australia and the Americas had an extremely diverse fauna of large beasts (giant wombats and kangeroos in Australia; elephants, bears, big cats, camelids, ground sloths etc in the Americas) until the last glaciation and the warming period that led into the Holocene interglacial. The majority of these megafauna species vanished suddenly during that recent period. To a lesser extent something similar happened in Eurasia, but nothing significant in Africa. Because the last glacial cycle also saw migration of efficient human hunter-gatherers to every other continent except Antarctica, many ecologists, palaeontologists and anthropologists saw a direct link between human predation and the mass extinction (see Earth-Pages of April 2012. Earlier humans had indeed spread far and wide in Eurasia before, and the crude hypothesis that the last arrivals in Australasia and the Americas devoured all the meatiest prey in three continents had some traction as a result: predation in Eurasia and Africa by earlier hominids would have made surviving prey congenitally wary of bipeds with spears. In Australia and the Americas the megafauna species would have been naive and confident in their sheer bulk, numbers, speed and, in some cases, ferocity. Other possibilities emerged, such as the introduction of viruses to which faunas had no immunity or as a result of climate change, but none of the three possibilities has gained incontrovertible proof. But the most popular, human connection has had severe knocks in the last couple of years. A fourth, that the extinctions stemmed from a comet impact proved to have little traction.

English: s were driven to extinction by and hu...
Megafauna in a late-Pleistocene landscape including woolly mammoths and rhinoceroses, horses, and cave lions with a carcass. (credit: Wikipedia)

Since the amazing success of analysing the bulk DNA debris in sea water – environmental DNA or eDNA – to look at the local diversity of marine animals, the analytical and computing techniques that made it possible have been turned to ancient terrestrial materials: soils, permafrost and glacial ice. One of the first attempts revealed mammoth and pre-Columbian horse DNA surviving in Alaskan permafrost, thanks to the herds’ copious urination and dung spreading. Several articles in the 24 July 2015 issue of Science review ancient DNA advances, including eDNA from soils that chart changes in both fauna and flora over the last glacial cycle (Pennisi, E. 2015. Lost worlds found. Science, v. 349, p. 367-369). Combined with a variety of means of dating the material that yield the ancient eDNA, an interesting picture is emerging. The soil and permafrost samples potentially express ancient ecosystems in far more detail than would fossil animals or pollens, many of which are too similar to look at the species level and in any case are dominated by the most abundant plants rather than showing those critical in the food chain.

Nunavut tundra
Plants of the Arctic tundra in Nunavut, Canada (Photo credit: Wikipedia)

The first major success in palaeoecology of this kind came with a 50-author paper using eDNA ‘bar-coding’ of permafrost from 242 sites in Siberia and Alaska IWillerslev, E. and 49 others 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, v. 506, p. 47-51. doi:10.1038/nature12921). Dividing the samples into 3 time spans – 50-25, 25-15 (last glacial maximum) and younger than 15 ka – the team found these major stages in the last glacial cycle mapped an ecological change from a dry tundra dominated by abundant herbaceous plants (forbs including abundant anemones and forget-me-not), to a markedly depleted Arctic steppe ecosystem then moist tundra with woody plants and grasses dominating. They also analysed the eDNA of dung and gut contents from ice-age megafauna, such as mammoths, bison and woolly rhinos, where these were found, which showed that forbs were the mainstay of their diet. Using bones of large mammals 6 member of the team also established the timing of extinctions in the last 56 ka (Cooper, A. et al. 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science, DOI: 10.1126/science.aac4315), showing 31 regional extinction pulses linked to the rapid ups and downs of climate during Dansgaard-Oeschger cycles in the run-up to the last glacial maximum. By the end of the last glacial maximum, the megafauna were highly stressed by purely climatic and ecological factors. Human predation probably finished them off.

Oxygen, magnetic reversals and mass extinctions

In April 2005 EPN reported evidence for a late Permian fall in atmospheric oxygen concentration to about 16% from its all-time high of 30% in the Carboniferous and earlier Permian.. This would have reduced the highest elevation on land where animals could live to about 2.7 km above sea level, compared with 4 to 5 today. Such an event would have placed a great deal of stress on terrestrial animal families. Moreover, it implies anoxic conditions in the oceans that would stress marine animals too. At the time, it seemed unlikely that declining oxygen was the main trigger for the end-Permian mass extinction as the decline would probably have been gradual; for instance by oxygen being locked into iron-3 compounds that give Permian and Triassic terrestrial sediments their unrelenting red coloration. By most accounts the greatest mass extinction of the Phanerozoic was extremely swift.

The possibility of extinctions being brought on by loss of oxygen from the air and ocean water has reappeared, though with suggestion of a very different means of achieving it (Wei, Y. and 10 others 2014. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction. Earth and Planetary Science Letters, v. 394, p. 94-98). The nub of the issue proposed by the Chinese-German authors is the dissociation and ionization by solar radiation of O2 molecules into O+ ions. If exposed to the solar wind, such ions could literally be ‘blown away’ into interplanetary space; an explanation for the lack of much in the way of any atmosphere on Mars today. Mars is prone to such ionic ablation because it now has a very weak magnetic field and may have been in that state for 3 billion years or more. Earth’s much larger magnetic field diverts the solar wind by acting as an electromagnetic buffer against much loss of gases, except free hydrogen and to a certain extent helium. But the geomagnetic field undergoes reversals, and while they are in progress, the field drops to very low levels exposing Earth to loss of oxygen as well as to dangerous levels of ionising radiation through unprotected exposure of the surface to the solar wind.

Artist's rendition of Earth's magnetosphere.
Artist’s rendition of Earth’s magnetosphere deflecting the solar wind. (credit: Wikipedia)

Field reversals and, presumably, short periods of very low geomagnetic field associated with them, varied in their frequency through time. For the past 80 Ma the reversal rate has been between 1 and 5 per million years. For much of the Cretaceous Period there were hardly any during a magnetic quiet episode or superchron. Earlier Mesozoic times were magnetically hectic, when reversals rose to rates as high as 7 per million years in the early Jurassic. This was preceded by another superchron that spanned the Permian and Late Carboniferous. Earlier geomagnetic data are haphazardly distributed through the stratigraphic column, so little can be said in the context of reversal-oxygen-extinction connections.

Geomagnetic polarity over the past 169 Ma, tra...
Geomagnetic polarity over the past 169 Ma (credit: Wikipedia)

Wei et al. focus on the end-Triassic mass extinction which does indeed coincide, albeit roughly, with low geochemically modelled atmospheric oxygen levels (~15%). This anoxic episode extended almost to the end of the Jurassic, although that was a period of rapid faunal diversification following the extinction event. Yet it does fall in the longest period of rapid reversals of the Mesozoic. However, this is the only clear reversal-oxygen-extinction correlation, the Cenozoic bucking the prediction. In order to present a seemingly persuasive case for their idea, the authors assign mass extinctions not to very rapid events – of the order of hundreds of thousand years at most – which is well supported by both fossils and stratigraphy, but to ‘blocks’ of time of the order of tens of million years.

My own view is that quite possibly magnetic reversals can have adverse consequences for life, but as a once widely considered causal mechanism for mass extinction they have faded from the scene; unlikely to be resurrected by this study. There are plenty of more plausible and better supported mechanisms, such as impacts and flood-basalt outpourings. Yet several large igneous provinces do coincide with the end of geomagnetic superchrons, although that correlation may well be due to the associated mantle plumes marking drastic changes around the core-mantle boundary. According to Wei et al., the supposed 6th mass extinction of the Neogene has a link to the general speeding up of geomagnetic reversals through the Cenozoic: not much has happened to either oxygen levels or biodiversity during the Neogene, and the predicted 6th mass extinction has more to do with human activity than the solar wind.

Enhanced by Zemanta

Large-animal extinction in Australia linked to human hunters

Diprotodon optatum, Pleistocene of Australia. ...
Artist's impression of a giant Australian wombat (Diprotodon) (credit: Wikipedia)

In North America, between 13 and 11.5 ka, around 30 species of large herbivorous mammals became extinct. Much the same occurred in Australia around 45 ka. Both cases roughly coincided with the entry of anatomically modern humans, where neither they nor earlier hominids had lived earlier. Such extinctions are not apparent in the Pleistocene records of Africa or Eurasia. An obvious implication is that initial human colonisation and a collapse of local megafaunas are somehow connected, perhaps even that highly efficient early hunting bands slaughtered and ate their way through both continents. But other possibilities can not be ruled out, including coincidences between colonisation and climate or ecosystem change. As many as thirteen different hypotheses await resolution, one that inevitably makes headline news repeatedly: that both the early Clovis culture and North American megafaunas met their end around the same time as the start of the Younger Dryas millennial cold snap because a meteorite exploded above North America (http://earth-pages.co.uk/2009/03/01/comet-slew-large-mammals-of-the-americas/). One problem in assessing the various ideas is accurately dating the actual extinctions, partly because terrestrial environments rarely undergo the continual sedimentation that builds up easily interpreted stratigraphic sequences. Another is that it is not easy to prove, say, that all giant kangaroos died in a short period of time because of the poor record of preservation of skeletons on land. A cautionary take concerns the demise of the woolly mammoth that roamed the frigid deserts of northern Eurasia and definitely was hunted by both modern humans and Neanderthals. It was eventually discovered that herds still survived on Wrangell Island until the second millennium BC. There is a need for a proxy that charts indirectly the fate of megafaunas plus accurate estimates of the timing of human colonisation. In North America there is a candidate for the first criterion: traces of a fungus (Sporormiella – see Fungal clue to fate of North American megafauna in EPN of January 2010) that exclusively lives in the dung of large herbivores. Fungal spores get everywhere, being wind-dispersed, and in NE US lake cores they fell abruptly at about 13.7 ka. Sporormiella needs to pass through the gut of herbivores to complete its life cycle.

Aboriginal Rock Art, Anbangbang Rock Shelter, ...
Aboriginal Rock Art, Kakadu National Park, Australia (Photo credit: Wikipedia)

The same genus of fungus breaks down dung in Australia. Measuring spore content in sediment on the floor of a Queensland lake shows the same abrupt decline in abundance at between 43 to 39 ka before present (Rule, S. et al. 2012. The aftermath of a megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science, v. 335, p. 1483-1486). Moreover, the fungal collapse is accompanied by a marked increase in fine-grained charcoal – a sign of widespread fires – and is followed by a steady increase in pollen of scrub vegetation at the expense of that of tropical rain forest trees. The shifts do not correlate with any Southern Hemisphere climatic proxy for cooling and drying that might have caused ecosystem collapse. That still does not mark out newly arrived humans as the culprits, as the early archaeological record of Australia, as in North America, is sparse and only estimated to have started at around 45 ka. Yet this is quite strong circumstantial evidence. The 20 or more animals – marsupials, birds and reptiles – with a mass more than 40 kg that formerly inhabited the continent would probably have been ‘naive’ as regards newly arrived, organised, well-armed and clever new predators, as would those of North America and much later in New Zealand, and would have been ‘easy prey’. Incidentally, faunas of both Africa and Eurasia are extremely wary of humans, possibly as a result of a far longer period of encounters with human hunter-gatherers.  In Australia’s case, the use of deliberate fire clearing to improve visibility of game may have had a major role, although it is equally likely that the demise of large herbivores would have left large amounts of leaf litter and dry grasses to combust naturally. Yet the Earth as a whole around 40 ka was slowly cooling and drying towards the last glacial maximum around 20 ka, so human influence may merely have pushed the megafauna towards extinction, such is the fragility of Australia’s ecosystems.