Turmoil in Roman Republic followed Alaskan volcanic eruption

That activities in the global political-economic system are now dramatically forcing change in natural systems is clear to all but the most obdurate. In turn, those changes increase the likelihood of a negative rebound on humanity from the natural world. In the first case, data from ice cores suggests that an anthropogenic influence on climate may have started with the spread of farming in Neolithic times. Metal pollution of soils had an even earlier start, first locally in Neanderthal hearths whose remains meet the present-day standards for contaminated soil, and more extensively once Bronze Age smelting of copper began. Global spread of anomalously high metal concentrations in atmospheric dusts shows up as ‘spikes’ in lead within Greenland ice cores during the period from 1100 BCE to 800 CE. This would have resulted mainly from ‘booms and busts’ in silver extraction from lead ores and the smelting of lead itself. In turn, that may reflect vagaries in the world economy of those times

Precise dating by counting annual ice layers reveals connections of Pb peaks and troughs with major historic events, beginning with the spread of Phoenician mining and then by Carthaginians and Romans, especially in the Iberian Peninsula. Lead reaches a sustained peak during the acme of the Roman Republic from 400 to 125 BC to collapse during widespread internal conflict during the Crisis of the Republic. That was resolved by the accession of Octavian/Augustus as Emperor in 31 BCE and his establishment of Pax Romana across an expanded empire. Lead levels rose to the highest of Classical Antiquity during the 1st and early 2nd centuries CE. Collapse following the devastating Antonine smallpox pandemic (165 to 193 CE) saw the ice-core records’ reflecting stagnation of coinage activity at low levels for some 400 years, during which the Empire contracted and changed focus from Rome to Constantinople. Only during the Early Medieval period did levels rise slowly to the previous peak.

The Okmok caldera on the Aleutian island of Umnak (Credit: Desert Research Institute, Reno, Nevada USA)

Earth-logs has previously summarised how natural events, mainly volcanic eruptions, had a profound influence in prehistory. The gigantic eruption of Toba in Sumatra (~73 ka ago) may have had a major influence on modern-humans migrating from Africa to Eurasia. The beginning of the end for Roman hegemony in the Eastern Mediterranean was the Plague of Justinian (541–549 CE), during which between 25 to 50 million people died of bubonic plague across the Eastern Empire. This dreadful event followed the onset of famine from Ireland to China, which was preceded by signs of climatic cooling from tree-ring records, and also with a peak of volcanogenic sulfate ions in the Greenland and Antarctic ice caps around 534 CE. Regional weakening of the populace by cold winters and food shortages, also preceded the Black Death of the mid-14th century. In the case of the Plague of Justinian, it seems massive volcanism resulted in global cooling over a protracted period, although the actual volcanoes have yet to be tracked down. Cooling marked the start of a century of further economic turmoil reflected by lead levels in ice cores (see above). Its historical context is the Early Medieval equivalent of world war between the Eastern Roman Empire, the Sassanid Empire of Persia and, eventually, the dramatic appearance on the scene of Islam and the Arabian, Syrian and Iraqi forces that it inspired (see: Holland, T. 2013. In the Shadow of the Sword: The battle for Global Empire and the End of the Ancient World. Abacus, London)

An equally instructive case of massive volcanism underlying social, political and economic turmoil has emerged from the geochemical records in five Greenlandic ice cores and one from the Siberian island of Severnaya Zemlya (McConnell, J.R. and 19 others 2020. Extreme climate after massive eruption of Alaska’s Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom. Proceedings of the National Academy of Sciences, recent article (22 June 2020); DOI: 10.1073/pnas.2002722117). In this case the focus was on ice layers in all six cores that contain sulfate spikes and, more importantly, abundant volcanic dust, specifically shards of igneous glass. Using layer counting, all six show major volcanism in the years 45 to 43 BCE. The Ides (15th) of March 44 BCE famously marked the assassination of Julius Caesar, two years after the Roman Republic’s Senate appointed him Dictator, following four years of civil war. This was in the later stages of the period of economic decline signified by the fall in ice-core levels of Pb (see above). The Roman commentator Servius reported “…after Caesar had been killed in the Senate on the day before, the sun’s light failed from the sixth hour until nightfall.” Other sources report similar daytime dimming, and unusually cold weather and famine in 43 and 42 BCE.

As well as pinning down the date and duration of the volcanic dust layers precisely (to the nearest month using laser scanning of the ice cores’ opacity), Joseph McConnell and the team members from the US, UK, Switzerland, Germany and Denmark also chemically analysed the minute glass shards from one of the Greenlandic ice cores. This has enabled them to identify a single volcano from 6 possible candidates for the eruption responsible for the cold snap: Okmok, an active, 8 km wide caldera in the Aleutian Islands of Alaska. Previous data suggest that its last major eruption was 2050 years ago and blasted out between 10 to 100 km3 of debris, including ash. Okmok is an appropriate candidate for a natural contributor to profound historic change in the Roman hegemony. The authors also use their ice-core data to model Okmok’s potential for climate change: it had a global reach in terms of temperature and precipitation anomalies. Historians may yet find further correlations of Okmok with events in other polities that kept annual records, such as China.

See also: Eruption of Alaska’s Okmok volcano linked to period of extreme cold in ancient Rome (Science Daily, 22 June 2020); Kornei, K. 2020. Ancient Rome was teetering. Then a volcano erupted 6,000 miles away. (New York Times, 22 June 2020)

The late-Ordovician mass extinction: volcanic connections

The dominant feature of Phanerozoic stratigraphy is surely the way that many of the formally named major time boundaries in the Stratigraphic Column coincide with sudden shifts in the abundance and diversity of fossil organisms. That is hardly surprising since all the globally recognised boundaries between Eras, Periods and lesser divisions in relative time were, and remain, based on palaeontology. Two boundaries between Eras – the Palaeozoic-Mesozoic (Permian-Triassic) at 252 Ma and Mesozoic-Cenozoic (Cretaceous-Palaeogene) at 66 Ma – and a boundary between Periods – Triassic-Jurassic at 201 Ma – coincide with enormous declines in biological diversity. They are defined by mass extinctions involving the loss of up to 95 % of all species living immediately before the events. Two other extinction events that match up to such awesome statistics do not define commensurately important stratigraphic boundaries. The Frasnian Stage of the late-Devonian closed at 372 Ma with a prolonged series of extinctions (~20 Ma) that eliminated  at least 70% of all species that were alive before it happened. The last 10 Ma of the Ordovician period witnessed two extinction events that snuffed out about the same number of species. The Cambrian Period is marked by 3 separate events that in percentage terms look even more extreme than those at the end of the Ordovician, but there are a great many less genera known from Cambrian times than formed fossils during the Ordovician.

Untitled-1
Faunal extinctions during the Phanerozoic in relation to the Stratigraphic Column.

Empirical coincidences between the precise timing of several mass extinctions with that of large igneous events – mainly flood basalts – suggest a repeated volcanic connection with deterioration of conditions for life. That is the case for four of the Famous Five, the end-Ordovician die-off having been ascribed to other causes; global cooling that resulted in south-polar glaciation of the Gondwana supercontinent and/or an extra-solar gamma-ray burst (predicated on the preferential extinction of Ordovician near-surface, planktonic fauna such as some trilobite families). Neither explanation is entirely satisfactory, but new evidence has emerged that may support a volcanic trigger (Jones, D.S. et al. 2017. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, v. 45, p. 631-634; doi:10.1130/G38940.1). David Jones and his US-Japan colleagues base their hypothesis on several very strong mercury concentrations in thin sequences in the western US and southern China of late Ordovician marine sediments that precede, but do not exactly coincide with, extinction pulses. They ascribe these to large igneous events that had global effects, on the basis of similar Hg anomalies associated with extinction-related LIPs. Yet no such volcanic provinces have been recorded from that time-range of the Ordovician, although rift-related volcanism of roughly that age has been reported from Korea. That does not rule out the possibility as LIPs, such as the Ontong Java Plateau, are known from parts of the modern ocean floor that formed in the Mesozoic and Cenozoic. Ordovician ocean floor was subducted long ago.

The earlier Hg pulses coincide with evidence for late Ordovician glaciations over what is now Africa and eastern South America. The authors suggest that massive volcanism may then have increased the Earth’s albedo by blasting sulfates into the stratosphere. A similar effect may have resulted from chemical weathering of widely exposed flood basalts which draws down atmospheric CO2. The later pulses coincide with the end of Gondwanan glaciation, which may signify massive emanation of volcanic CO2 into the atmosphere and global warming. Despite being somewhat speculative, in the absence of evidence, a common link between the Big Five plus several other major extinctions and LIP volcanism would quieten their popular association with major asteroid and/or comet impacts currently being reinvigorated by drilling results from the K-Pg Chicxulub crater offshore of Mexico’s Yucatan Peninsula.

Climate change and global volcanism

Geologists realized long ago that volcanic activity can have a profound effect on local and global climate. For instance, individual large explosive eruptions can punch large amounts of ash and sulfate aerosols into the stratosphere where they act to reflect solar radiation back to space, thereby cooling the planet. The 1991 eruption of Mt Pinatubo in the Philippines ejected 17 million tones of SO2; so much that the amount of sunlight reaching the Northern Hemisphere fell by around 10% and mean global temperature fell by almost 0.5 °C over the next 2 years. On the other hand, increased volcanic emissions of CO2 over geologically long periods of time are thought to explain some episodes of greenhouse conditions in the geological past.

Ash plume of Pinatubo during 1991 eruption.
Ash plume of Mount Pinatubo during its 1991 eruption. (credit: Wikipedia)

The converse effect of climate change on volcanism has, however, only been hinted at. One means of investigating a possible link is through the records of volcanic ash in sea-floor sediment cores in relation to cyclical climate change during the last million years. Data relating to the varying frequency volcanic activity in the circum Pacific ‘Ring of Fire’ has been analysed by German and US geoscientists (Kutterolf, S. et al. 2013. A detection of Milankovich frequencies in global volcanic activity. Geology, v. 41, p. 227-230) to reveal a link with the 41 ka periodicity of astronomical climate forcing due to changes in the tilt of the Earth’s axis of rotation. This matches well with the frequency spectrum displayed by changes in oxygen isotopes from marine cores that record the waxing and waning of continental ice sheets and consequent falls and rises in sea level. Yet there is no sign of links to the orbital eccentricity (~400 and ~100 ka) and axial precession (~22 ka) components of Milankovitch climatic forcing. An interesting detail is that the peak of volcanism lags that of tilt-modulated insolation by about 4 ka.

At first sight an odd coincidence, but both glaciation and changing sea levels involve shifting the way in which the lithosphere is loaded from above. With magnitudes of the orders of kilometres and hundreds of metres respectively glacial and eustatic changes would certainly affect the gravitational field. In turn, changes in the field and the load would result in stress changes below the surface that conceivably might encourage subvolcanic chambers to expel or accumulate magma. Kutterolf and colleagues model the stress from combined glacial and marine loading and unloading for a variety of volcanic provinces in the ‘Ring of Fire’ and are able to show nicely how the frequency of actual eruptions fits changing rates of deep-crustal stress from their model. Eruptions bunch together when stress changes rapidly, as in the onset of the last glacial maximum and deglaciations, and also during stadial-interstadial phases.

Whether or not there may be a link between climate change and plate tectonics, and therefore seismicity, is probably unlikely to be resolved simply because records do not exist for earthquakes before the historic period. As far as I can tell, establishing a link is possible only for volcanism close to coast lines, i.e. in island arcs and continental margins, and related to subduction processes, because the relative changes in stress during rapid marine transgressions and recessions would be large.. Deep within continents there may have been effects on volcanism related to local and regional ice-sheet loading. In the ocean basins, however, there remains a possibility of influences on the activity of ocean-island volcanoes, though whether or not that can be detected is unclear. Some, like Kilauea in Hawaii and La Palma in the Canary Islands, are prone to flank collapse and consequent tsunamis that could be influenced by much the same process. Another candidate for a climate-linked, potentially catastrophic process is that of destabilisation of marine sediments on the continental edge, as in the Storegga Slide off Norway whose last collapse and associated tsunami around 8 thousand years ago took place during the last major rise in sea level during deglaciation. The climatic stability of the Holocene probably damps down any rise in geo-risk with a link to rapid climate change, which anthropogenic changes are likely to be on a scale dwarfed by those during ice ages.