Origin of the genus Homo: a Paranthropus link?

Reconstruction of a Paranthropus head (Credit: Jerry Humphrey, Pinterest)

Paranthropoids had large, broad teeth and pronounced cheekbones plus a bone crest on the top of their skulls that were the attachments for powerful jaw muscles, much as in modern gorillas. Unlike gorillas they were definitely bipedal and were more similar to australopithecines. They have been called ‘robust’ australopithecines but they were not significantly taller or heavier. The first to be unearthed at Olduvai, Tanzania in 1959 (Paranthropus boisei) was dubbed ‘Nutcracker Man’ by its finder, and many have implied that paranthropoids’ teeth and powerful jaws were signs of a vegetarian diet that needed a lot of chewing. Yet their teeth do not show the microscopic pitting associated with living primates that eat hard plant parts and nuts, or the heavy wear that results from eating grasses. They probably ate soft plants, such as semi-aquatic succulents or tubers, but meat-eating that causes little dental wear cannot be ruled out. Some specimens are associated with long bones of other animals whose ends are worn, suggesting that they may have used them as tools for digging. Plant remains found at paranthropoid sites suggests that they inhabited woodland, together with coexisting australopithecines. They were around in the form of three successive species from 2.9 to 1.2 Ma, outlasting australopithecines. The later paranthropoids coexisted with Homo habilis and H. erectus: they were clearly just as successfully adapted to their surroundings as were early humans.

In early 2023 evidence was published that associated Oldowan stone tools with remains of Paranthropus, together with deliberately defleshed and cut bones (see also): though association is not proof of a direct link. Interestingly, the hand of a P. robustus found in the Swartkrans cave system in South Africa is consistent with a human-like precision grip, i.e. it had an opposable thumb. Swarkrans also yielded the earliest evidence for the deliberate use of fire about 1.5 Ma ago, associated with remains of both P. robustus and H. erectus. All this suggests that a case could be made for paranthropoids’ being human ancestors – supporting evidence has just been published (Braga, J. et al. 2023. Hominin fossils from Kromdraai and Drimolen inform Paranthropus robustus craniofacial ontogeny. Science Advances, v. 9, article eade7165; DOI: 10.1126/sciadv.ade7165).

Fossil-bearing breccias beneath the floor of the Kromdraai cave in the Cradle of Humankind World Heritage Site 45 km NW of Johannesburg, South Africa yielded the first near-complete P. robustus skull in 1938, another being found in cave breccias at the nearby Drimolen quarry. These deposits also contained remains of four infants assigned to the species, whose teeth and cranial parts were at different stages of juvenile development (ontogeny). José Braga of the University of Toulouse, France and co-workers from South Africa and the USA compared this growth sequence with those teased out from immature specimens of Australopithecus africanus and early Homo.Their tentative conclusion is that Paranthropus robustus is more closely related to early humans than to australopithecines of the same stratigraphic age.

Skull of a probable adult female P. robustus (left) with that of H. habilis (centre) and A. africanus (right). Credits: all from Wikipedia pages

So, it now seems possible that paranthropoids are not ‘robust’ australopithecines in an acceptable, taxonomic sense. Their closer resemblance in early development to early humans, together with their association with early stone tools used for defleshing prey animals, together with evidence for possible their use of fire, further strengthens their candidacy for an ancestral link to humans. The best preserved skulls of Homo habilis and a female P. robustus (males of that species show the distinctive saggital crest) do show close similarities, that of a roughly contemporary A. africanus having distinctly wider cheeks than both. All three species were in life probably of much the same weight and stature (30 to 40 kg and 110 to 130 cm) but H. habilis had a significantly larger brain volume (500 to 900 cm3) than the other two (each ~450 cm3). However, this isn’t proof that the genus Homo evolved from a paranthropoid ancestor. That would require genetic evidence, unlikely to be extracted from specimens because DNA seems to degrade more quickly under the conditions of the tropics than at high latitudes. Debate on ultimate human origins will probably be endless. Perhaps it would make more sense simply to accept that early humans weren’t the only ‘smart kids on the palaeoanthropological block’, one of which left no issue after 1.2 Ma ago.

See also: Handwerk, B. 2023. Who made the first stone tool kits? Smithsonian Magazine, 8 February 2023, article 180981606

The ‘star’ hominin of South Africa

The week of 7 to 11 September 2015 was one of the most news-rich of the year. To name but two issues: the plight of tens of thousands of refugees fleeing Africa and the Middle East to Europe was made worse by total confusion, little action and downright obstruction by some of the most privileged governments on Earth ; in Britain one of the most exciting political dramas in decades – the leadership elections of the Labour Party – were reaching a climax of press and political skulduggery because of the unexpected direction both had taken. Something else burst onto the media scene that was, if anything, even more out-of-the-blue to the majority of people on Thursday 10 September: the remains of at least 15 individuals of a new hominin species found in a near-inaccessible cave were announced by a multinational team of geologists and anthropologists. The feature that ensured its wide publicity in competition with some pretty serious political and humanitarian developments was the suggestion that the corpses had been ritually laid to rest by beings that lived maybe 2 million years ago. This major scientific stir arose from the publication of two lengthy papers by the open-access, electronic journal eLife (Berger, L. R. and 46 others 2015. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. eLife DOI: 10.7554/eLife.09560. Dirks, P.H.G.M. and 23 others 2015. Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa. eLife, DOI: 10.7554/eLife.09560).

Artist’s reconstruction of the face of Homo naledi (credit: John Gurche artist, Mark Thiessen photographer, National Geographic)

Homo naledi (naledi means ‘star’ in the Sotho language: the find was in the Rising Star cave system near Johannesburg) is known in more anatomical detail than any early hominin, and most closely resembles H. habilis and H. rudolphensis discovered 3 to 4 thousand miles away in Tanzania and Kenya. The Dinaledi deposit remains undated but likely to come out at around 2 Ma or older. The sheer wealth of anatomical detail, including complete foot- and hand-bone remains from individuals, evidence for a range of ages at death, and plenty of dental and cranial information, actually poses a taxonomic problem of comparison with remains of other early hominins. Most of them are fragmentary, and it seems likely that once a precise date is obtained H. naledi will assume greater importance in comparative anatomy. Comparison with australopithecines is easier because of their abundant remains, and H. naledi is clearly distinct from that clade as regards gait, chewing, overall physiognomy (see reconstruction video) and cranial dimensions, but does have some australopithecine affinities. They were certainly different from their near geographic neighbour Au. sediba, also found in a cave deposit within the great swath of Palaeoproterozoic limestones near Johannesburg, where the Cradle of Humankind UNESCO World Heritage Site is situated. The brain of Homo naledi was on a par with those of australopithecines as regards volume, yet larger than that of H. floresiensis: it does seem that brain size is not necessarily related to the uses to which it is put.

The route into the Dinaledi Chamber where bones of at least 15 individual members of Homo naledi were found (credit: National Geographic magazine http://news.nationalgeographic.com/2015/09/150910-human-evolution-change/)

Interestingly, it is reported that only the most diminutive members of the research team were able to enter the chamber where the remains were found because of the narrowness of the connecting passage. Also, access from the main cave system involved an upward ‘U-bend’, so that although water could – and did from time to time – enter the chamber in the past, it is unlikely that coarse material such as large bones could simply have been washed in, the more so as the chamber is on a minor spur from the main system and its outlet is through small floor drains that could not sustain torrential flow. Nor is there any direct access from the ground surface to this part of the system. Some of the more fragile body parts, such as a hand, are still articulated, which suggests a non-violent movement to the chamber. There are no signs of physical trauma to any of the bones, ruling out action by carnivores or transport by violent floods, nor any indicative of de-fleshing as by cannibalism. However, before fossilisation, many of the bones had been gnawed by beetles and snails. This combination of features leads to the possibility that corpses may have been deliberately placed in the chamber. If they had been, then to get to deepest recess of the cave system and find the Denalidi Chamber required illumination: fire brands.  That the chamber was actually a living space is highly unlikely because of its remoteness from the surface. One big question that cannot be answered is whether or not such possible disposal was by ritual or simply for sanitary arrangements. Another possibility, not considered by the authors is seeking refuge from predators and becoming trapped in the desperately constricted space.

The possibility of ritual burial is clearly what has seized headlines. Yet few palaeoanthropologists will accept that: only Neanderthals and anatomically modern humans are definitely considered to have adopted such a practice, in the last hundred thousand years. The association of a bifacial stone tool with 350 ka old H. heidelbergensis remains at Atapuerca in northern Spain has been suggested to be the earliest evidence for ritual burial, but is not widely accepted. There are no reports of artefacts in the Dinaledi Chamber.