When rain kick-started evolution

The end of the Palaeozoic Era was marked by the greatest known mass extinction at the Permian-Triassic boundary 252 Ma ago. An estimated 96% of known marine fossil species simply disappeared, as did 70% of vertebrates that lived on land. Many processes seem to have conspired against life on Earth although it seems that one was probably primary: the largest known flood-basalt event, evidence for which lies in the Siberian Traps. It took as long as 50 Ma for ecosystems to return to their former diversity. But, oddly, it was animals at the top of the marine food chain that recovered most quickly, in about 5 million years. There must have been food in the sea, but it was at first somewhat monotonous. The continents were still configured in the Pangaea supercontinent, so much land was far from oceans and thus dry. Oxygen was being drawn down from the atmosphere to combine with iron in Fe2O3 to form vast tracts of redbeds for which the Triassic is famous. From a peak of 30% in the Permian, atmospheric oxygen descended to 16% in the early Triassic, so living even at sea level would have been equivalent to surviving today at 2.7 km elevation today. Potential ecological niches were vastly reduced in fertility and in altitude, and Pangaea still had vast mountain ranges inherited from its formative tectonics as well as being arid, apart from in polar regions. Unsurprisingly, recovery of terrestrial diversity, especially among vertebrates, was slow during the early Triassic.

Triassic grey terrestrial sediments on the Somerset coast of SW England (credit: Margaret W. Carruthers; https://www.flickr.com/photos/64167416@N03/albums/72157659852255255)

Then, about halfway through the Triassic Period, it began to rain across Pangaea. Whether that was continual or seasonal is uncertain, although the presence of large mountains and high plateaus would favour monsoon circulation, akin to the present-day Indian monsoon associated with the Himalaya and Tibetan Plateau. How do geologists know that central Pangaea became wetter? The evidence lies in grey sedimentary strata between the otherwise universal redbeds, which occur in the Carnian Age and span one to two million years around 232 Ma (Marshall, M. 2019. Did a million years of rain jump-start dinosaur evolution? Nature, v. 576, p. 26-28; doi: 10.1038/d41586-019-03699-7). A likely driver for this change in colour is a rise in water tables that would exclude oxygen from sediments deposited recently. The red Iron-3 oxides were reduced, so that soluble iron-2 was leached out. Some marine groups, such as crinoids, underwent a sudden flurry of extinctions, as did plants and amphibians on land. But others received a clear boost from this Carnian Pluvial Event. A few dinosaurs first appear in older Triassic sediments, but during the Carnian they began to diversify from diminutive bipedal species into the main groups so familiar to many: ornithischians that lead to Stegosaurus and Triceratops and the forerunners of the saurischians that included huge long-necked herbivores and the bipedal theropods and birds. Within 4 Ma dinosaurs had truly begun their global hegemony. Offshore in shallow seas, the scleractinian corals, which dominate modern coral reef systems, also exploded during the Carnian from small beginnings in the earlier Triassic. It is even suspected that the Carnian nurtured the predecessor of mammals, although the evidence is only from isolated fossil teeth.

A Carnian shift in carbon isotopes, measured in Triassic limestones of the Italian Dolomites, to lower proportions of the heavier 13C suggests that a huge volume of the lighter 12C had entered the atmosphere. That could have resulted from large-scale volcanism, the 232 Ma old laves of the Wrangell Mountains in Alaska being a likely suspect. Such an input would have had a warming climatic outcome that would have increased tropical evaporation of ocean water and the humidity over continental masses. The once ecologically monotonous core of Pangaea may have greatly diversified into many more niches awaiting occupants, thereby stimulating the terrestrial evolutionary burst. Perhaps ironically, and fortunately, a volcanic near snuffing-out of life on Earth was soon followed by another with the opposite effect. Yet another negative outcome arrived with the flood basalts of the Central Atlantic Magmatic Province at the end of the Triassic (201 Ma), to be followed by further adaptive radiation among those organisms that survived into the Jurassic.

Last day of the dinosaurs

As they say, ‘everyone knows’ that the dinosaurs were snuffed out, except, of course, for those that had evolved to become birds and somehow survived. When it happened is known quite precisely – at the end of the Cretaceous (66.043 ± 0.011 Ma) – and there were two possible causal mechanisms: emissions from the Deccan Trap flood basalts and/or the Chicxulub impact crater. But what was the Cretaceous-Palaeogene (K-Pg) boundary event actually like? Many have speculated, but now there is evidence.

In 2016 a deep-sea drilling rig extracted rock core to a depth of 1.35 km beneath the sea floor off Mexico’s Yucatan Peninsula, slightly off the centre of the circular Chicxulub structure (see K-T (K-Pg) boundary impact probed, November 2016). This venture was organised and administered jointly by the International Ocean Discovery Program IODP) and the International Continental Scientific Drilling Program (ICDP) as Mission Specific Platform Expedition no. 364. Results from the analysis of the cored rock sequence have been generating pulses of excitement among palaeontologists, petrologists and planetary scientist on a regular basis. The science has been relatively slow to emerge in peer-reviewed print. Appetites have been whetted and the first substantial paper is about the bottom 130 metres of the core (Gulick, S.P.S. and 29 others 2019. The first day of the Cenozoic. Proceedings of the National Academy of Sciences. 9 September 2019; DOI: 10.1073/pnas.1909479116). It might seem as though the publication schedule has been stage managed to begin with, literally, the ‘bang’ itself.

The deepest 20 m thick layer is mainly silicate glass. It was formed in the seconds after the 12 km-wide impactor arrived to smash through the water and sea-floor sediments of the early Caribbean Sea, at speed of around 20 Km s-1. It vaporised water and rock as well as shoving aside the surrounding sea and blasting debris skyward and outward. In an instant a new hole in the crust was filled with molten rock. The overlying rock is a veritable apple-crumble of shattered debris mixed with and held together by glass, and probably formed as water flowed into the crater to result in explosive reaction with the molten crystalline crust beneath. The fragments lessen in size up the core, probably reflecting ejected material mixed in the displaced seawater. Impact specialists have estimated that this impactite layer formed in little more than ten minutes after collision. The glass-laden breccia is abruptly capped by bedded sediments, considered to have been delivered by the backwash of a huge, initial tsunami. In them are soils and masses of charcoal, from the surrounding land areas, scorched and burnt by the projectile’s entry flash, inundated by the tsunami and then dragged out to sea as it receded. These are the products of the hours following the impact as successive tsunamis swashed to and fro across the proto-Caribbean Basin; hence ‘The first day of the Cenozoic’, of Gulick et al.’s title.

IMGP6086
Artist’s impression of the Chicxulub impact (Credit: Barcroft Productions for the BBC)

Other cores drilled beyond the scope of the Chicxulub crater during offshore oil exploration show a sequence of limestones with thick beds of gypsum (CaSO4.2H2O). Yet the crater debris itself contains no trace of this mineral. Around 325 Gt of sulfur, almost certainly in the form of SO2, entered the atmosphere on that first day, adding to the dust. Ending up in the stratosphere as aerosols it would have diffused solar radiation away from the surface, resulting in an estimated 25°C global cooling that lasted 25 years. The sulfur oxides in the lower atmosphere ended up in acid rain that eventually acidified the upper ocean to devastate shallow-marine life.

See also: Amos, J. 2019. The day the dinosaurs’ world fell apart. (BBC News 10 September 2019); Rocks at asteroid impact site record first day of dinosaur extinction (Phys.org); Wei-Haas, M. 2019. Last day of the dinosaurs’ reign captured in stunning detail.  National Geographic, 9 September 2019.

Mystery of upside-down dinosaurs resolved

Remains of ankylosaurs, a popular family of heavily armoured dinosaurs, occur in sedimentary sequences that range in age from early Jurassic to the close of the Cretaceous. Their defences seem almost impregnable, being constructed of thick, fused scales, often bearing formidable spines, which covered them completely. They bore a crude resemblance to modern armadillos apart from the fact that they were unable to roll-up defensively. In some species the rigid tail bears a large, knob of scale tissue. At up to 3 m long, were the tail to be swung it would have packed bone-cracking momentum. Interestingly, to a poorly sighted predator the club may have been mistaken for the animal’s head at the end of a long neck, so perhaps it lured a potential assailant within range of its devastating power. The largest ankylosaur, from the Cretaceous of western Canada, was the size of a small bus, up to 8m long, 1.5 m wide, standing 1.7 m high and weighing in at around 5 to 8 t. Such dimensions would have made it almost impossible to be bitten, even by the largest predatory dinosaurs, and difficult to turn over. Their teeth show that ankylosaurs were herbivorous, and their somewhat bulbous bodies almost certainly contained a massive digestion system.

Polski: JuraPark Bałtów - Park Dinozaurów - An...
Recfonstruction of Ankylosaurus at the JuraPark Bałtówin Poland (credit: Wikipedia)

The mystery lies in the fact that most ankylosaur fossils are found lying on their backs. Early dinosaur aficionados suggested a tendency for the lumbering beasts to tumble down slopes and become stranded on their backs, so to die miserably. Such clumsiness is hardly a positive characteristic of evolutionary fitness for such a long-lived group, and, besides, the sedimentary formations in which they are found indicate very gentle slopes. So, were they flipped by dextrous predators, as imagined in some early films purporting to look to the distant past? Probably not, for most well preserved fossils show no sign of bites or gnawing. From a study of 36 late-Cretaceous ankylosaurs from Alberta four Canadian and US palaeontologists (Mallon, J.C. et al. 2018. A “bloat-and-float” taphonomic model best explains the upside-down preservation of ankylosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 497, p. 117-127; doi:10.1016/j.palaeo.2018.02.010 support the idea of their carcases or even living animals having been picked up by flood waters when their high centre of gravity would have flipped them upside down. Bloating through decay might then allow them to be transported large distances. Unsurprisingly, their conclusions rest on model simulations.

The winter of dinosaurs’ discontent

Under the auspices of the International Ocean Discovery Program (IODP), during April and May 2016 a large team of scientists and engineers sank a 1.3 km deep drill hole into the offshore, central part of the Chicxulub impact crater, which coincided with the K-Pg mass extinction event. Over the last year work has been underway to analyse the core samples aimed at investigating every aspect of the impact and its effects. Most of the data is yet to emerge, but the team has published the results of advanced modelling of the amount of climate-affecting gases and dusts that may have been ejected (Artemieva, N. et al. 2017. Quantifying the release of climate-active gases by large meteorite imp-acts with a case study of Chicxulub. Geophysical Research Letters, v. 44; DOI: 10.1002/2017GL074879).  . From petroleum exploration in the Gulf of Mexico the impact site is known to have been underlain by about 2.5 to 3.5 km of Mesozoic sediments that include substantial amounts of limestones and evaporitic anhydrite (CaSO4) – thicknesses of each are of the order of a kilometre. The impact would inevitably have yielded huge volumes of carbon- and sulfur dioxide gases, as well as water vapour plus solid and molten ejecta. The first, of course, is a critical greenhouse gas, whereas SO2 would form sulfuric acid aerosols if it entered the stratosphere. They are known to block incoming solar radiation. So both warming and cooling influences would have been initiated by the impact. Dust-sized ejecta that lingered in the atmosphere would also have had climatic cooling effects. The questions that the study aimed to answer concerns the relative masses of each gas that would have reached more than 25 km above the Earth to have long-term, global climatic effects and whether the dominant effect on climate was warming or cooling. Both gases would have added the environmental effects of making seawater more acid.

Chicxulub2
3-D simulation of the Chicxulub crater based on gravity data (credit: Wikipedia)

Such estimates depend on a large number of factors beyond the potential mass of carbonate and sulfate source rocks. For instance: how big the asteroid was; how fast it was travelling and the angle at which it struck the Earth’s surface determine the kinetic energy involved and the impact mechanism. How that energy was distributed between atmosphere, seawater and the sedimentary sequence, together with the pressure-temperature conditions for the dissociation of calcite and anhydrite all need to be accounted for by modelling. Moreover, the computation itself becomes extremely long beyond estimates for the first second or so of the impact. Earlier estimates had been limited by computer speeds to only the first few seconds of the impact and could not allow for other than vertical impacts. The new study, by supercomputers and improved algorithms, used a likely 60° angle of impact, new data on mineral decomposition and simulated the first 15 to 30 seconds. The results suggested that 325 ± 130 Gt of sulfur and 425 ± 160 Gt CO2 were ejected, compared with earlier estimates of 40-560 Gt of sulfur and 350-3,500 Gt of CO2.  The greater proportion of sulfur release to the stratosphere pushes the model decisively towards global cooling, probably over a lengthy period – perhaps centuries. Taking dusts into account implies that visible sunlight would also have been blocked, devastating the photosynthetic base of the global food chain, in the sunlit parts of oceans as well as on land.

But we have to remember that these are the results of a theoretical model. In the same manner as this study has thrown earlier modeling into doubt, more data – and there will be a great many from the Chicxulub drill core itself – and more sophisticated computations may change the story significantly. Also, the other candidate for the mass extinction event, the flood basalt volcanism of the Deccan Traps, and its geochemical effects on the climate have yet to be factored in. The next few lines of Shakespeare’s soliloquy for  Richard III may well emerge from future work

… Made glorious summer by this sun of York;
And all the clouds that lour’d upon our house
In the deep bosom of the ocean buried …

See also: BBC News comment on 31 October 201

 

The dinosaur they could not kill: Brontosaurus is back

It would be pretty safe to say that everyone has heard of Brontosaurus, but in the 1970s the genus vanished from the palaeobiology lexicon. The ‘Bone Wars’ of post-Civil War US palaeontology stemmed from the astonishing prices that dinosaur skeletons fetched. The frenzy of competition to fill museums unearthed hundreds of specimens, but the financial enthusiasm did not extend to painstaking anatomy. Finding a new genus meant further profit so a slapdash approach to taxonomy might pay well. So it did with the dinosaur family Diplodocidae for Othniel Marsh, one of the fossil marauders. He along with his main competitor, Edward Cope, was a wizard fossicker, but lacked incentive to properly describe what he unearthed. In 1877 Marsh published a brief note about a new genus that he called Apatosaurus, then hurried off to for more booty. Two years later he returned from the field with another monster reptile, and casually made a brief case for the ‘Thunder Lizard’, Brontosaurus. Unlike his usage of ‘Deceptive Lizard’ for Apatosaurus, the English translation of Brontosaurus caught the public imagination and lingers to this day as the archetype for a mighty yet gentle, extinct beast. Yet, professional palaeontologists were soon onto the lax ways of Marsh and Cope, and by 1903 deemed Brontosaurus to be taxonomically indistinguishable from Apatosaurus, and as far as science was concerned the ‘Thunder Lizard’ was no more.

Illustration of a Brontosaurus (nowadays calle...
Artist’s impression of a Brontosaurus . The idea that it was wholly or mostly aquatic is now considered outdated. (credit: Wikipedia)

But, the legacy of frenzied fossil collecting of a century or more ago is huge collections that never made it to display, which form rich pickings for latter-day palaeontologists with all kinds of anatomical tools now at their disposal: the stuff of almost endless graduate studies. Emanuel Tschopp of the New University of Lisbon with colleagues took up the challenge of the Diplodocidae by examining 49 named specimens and 32 from closely related specimens as controls, measuring up to 477 skeletal features (Tschopp, E. et al. 2015. A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ, v. 3, doi10.771/peerj.857). An unintended consequence was their discovery that 6 specimens of what had become Apatosaurus excelsus (formerly Marsh’s Brontosaurus) differed from all other members of its genus in 12 or more key characteristics. It seems to taxonomists a little unfair that Brontosaurus should not be resurrected, and that looks likely.

Had this been about almost any other group of fossils, with the exception perhaps of the ever-popular tyrannosaurs, the lengthy paper would have passed unnoticed except by specialist palaeontologists. In a little over a week the open-access publication had more than 17 thousand views and 3300 copies were downloaded.

See also: Balter, M. 2015. Bully for Brontosaurus. Science, v. 348, p. 168