Late formation of the Earth’s inner core

The layered structure of the Earth was discovered using the varying arrival times of seismic waves from major earthquakes, which pass through the Earth, at seismometer stations located across the planet’s surface. Analysis of these arrival times indicates the wavepaths taken through the planet, involving reflections and refractions at boundaries of materials with distinctly different physical properties. S-waves from an earthquake do not arrive in a wide ‘shadow zone’ around its antipode. Since that kind of wave depends on shearing and cannot pass through liquid the shadow reveals the presence of an outer core made of very dense liquid iron and nickel. P-waves that travel in a manner akin to sound waves also show a shadow but it is annular in form around the antipode because of refraction at the core-mantle boundary, but they do penetrate to reach the antipode. However, their arrival times there show faster speeds than expected from an entirely liquid core, and so reveal a central mass, the inner core, which is a ball of solid iron-nickel alloy about 70% of the Moon’s size.

The Earth’s internal structure as revealed by seismic waves (Credit: Smithsonian Institute)

Movements of liquid Fe-Ni in the outer core generate Earth’s magnetic field in the manner of a self-exciting dynamo. Motion in the outer core results from convection of heat from below – probably mainly heat generated by planetary accretion – coupled with the Earth’s rotation and the Coriolis Effect.  The present style of motion is in a thick molten layer trapped between the solid mantle and the inner core. Its circulation results in a magnetic field with two distinct poles close to the geographic ones. The field is crudely similar to that of a bar magnet, with lesser deviations spread around the planet. However, it is not particularly stable, as shown by periodic flips or reversals of polarity through geological time (see: How the core controls Earth’s magnetic field reversals; April 2005).

Few geoscientists doubt that the core formed early in Earth’s history from excess iron, nickel and sulfur, plus other siderophile elements such as gold, that cannot be accommodated by the dominant silicates of the mantle. This could not have been achieved other than by iron-rich melts sinking in some way because of their density. Gradual loss of original heat of accretion and declining radiogenic heat from rare isotopes (e.g. 40K) in the melt suggests an original, totally molten core that at some time began to crystallise under stupendous pressure in its lowest parts. A fully molten core would have been turbulent and therefore able to generate a magnetic field, and Archaean rocks still retain remanent magnetisation. The form that the field took can only be modelled. At times it may have been dipolar – paleomagnetic pole positions match geological evidence for early supercontinents –  and it may have undergone reversals. When the inner core formed has long remained disputed, yet thanks to advances in palaeomagnetic analysis it may now have been resolved  (Zhou, T. and 11 others 2022. Early Cambrian renewal of the geodynamo and the origin of inner core structure. Nature Communications, v. 13, article 4161; DOI:10.1038/s41467-022-31677-7).

Tinghong Zhou of the University of Rochester, USA, and colleagues from other US, Chinese and British institutions have assiduously measured the original magnetic intensities locked in tiny iron- and iron-titanium oxide needles trapped in feldspars that dominate plutonic igneous rocks, known as anorthosites, of late Precambrian age. They found that, by about 565 Ma ago during the Ediacaran Period, the Earth’s magnetic field strength had fallen to almost a sixth of its value in the early Archaean: about 15 times less than it is today. Within a mere 30 Ma it had risen to become 5 times its lowest value , as recorded by a Cambrian anorthosite, and then rose steadily through the Phanerozoic Eon to its present strength. Modelling of the rapid rebound suggests that the inner core had begun to crystallise by about 550 Ma to reach half its present radius by the end of the Ordovician Period (~450 Ma).

That event may also have been a milestone for the continuation of biological evolution on Earth. While Mars once probably had a molten core and magnetic field, it vanished 4 billion years ago, probably when its core became solid. Early Mars had an ocean in its northern hemisphere up to about 3.8 Ga, and there is plenty of evidence for erosion by water on its higher surfaces. For liquid water to have existed there for hundreds of million years demands a thick, warm atmosphere able to initiate a greenhouse effect. With low atmospheric pressure water could have existed only as ice or water vapour. Now its atmosphere is very thin and except at its poles there is no sign of surface water, even as ice (it is possible that significant amounts of water ice remain protected beneath the surface of Mars). One hypothesis is that when Mars lost its magnetic field it also lost protection from the stream of energetic particles known as the solar wind, which can strip water vapour and carbon dioxide – and thus their ability to retain atmospheric heat – from the top of the atmosphere. Earth is currently protected from the solar wind by its strong magnetic field and magnetosphere that deflects high-speed, charged particles. During the Ediacaran Period it almost lost that protection, but was spared by the self-exciting dynamo being regenerated.

See also: How did Earth avoid a Mars-like fate? Ancient rocks hold clues. Science Daily, 25 July 2022

An early magma ocean on Mars?

The division of the lunar surface into two petrological domains – ancient anorthositic highlands and younger basaltic maria – spurred the idea, as long ago as the early 1970s, that the early Moon had a deep ocean of magma at the surface, whose cooling caused fractional crystallization. Low density plagioclase feldspar, dominated by high-calcium anorthite and bytownite, floated to the surface to form the lunar anorthosites leaving a more mafic mantle from which the mare basalts formed by partial melting. The key evidence in support of this hypothesis lies in the rare-earth elements of the two terrains. Because plagioclase feldspar has a much stronger affinity to incorporate the element europium (Eu) than the other REEs, the lunar anorthosites are enriched in Eu compared with its related elements. If the highland anorthosites did form by fractional crystallisation the remaining magma that formed the lunar mantle would be depleted in Eu yet enriched in the remaining REE. Although there are no samples of the Moon’s mantle there are plenty of the mare basalts that formed when it partially melted, probably as a result of huge impacts around 3.8 billion years ago. They should have inherited dominant features of mantle geochemistry, and indeed they do show characteristic depletion of Eu.

Lunar Highlands, near Descartes Crater. Collec...
Lunar Highland anorthosite, collected by the crew of Apollo 16. (credit: Wikipedia)

The giant-impact hypothesis for the Earth-Moon system presupposes that such a cataclysm would have left much of the outer Earth in much the same molten condition and destined to fractionate in the same manner. There are geochemical hints from terrestrial rocks that do support such an idea. An important target for exploration of Mars has been to check if a magma ocean also existed early in its history. Of the various missions in recent years only two have the capacity to shed useful light on the issue: the US Mars Reconnaissance Orbiter and Mars Odyssey. Both orbiters carry more sophisticated remote sensing instruments than any circling the Earth. The first has the hyperspectral Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) that senses visible to short-wave infrared (VNIR) radiation, the other deploys  the Thermal Emission Imaging System (THEMIS) that captures different parts of the longer wavelength thermal infrared (TIR) spectrum emitted by surface materials. Both allow spectra of surface materials to be reconstructed and compared with the features of known minerals from the Earth and Moon.

Feldspars are highly reflective for the most part of  the VNIR range but show a shallow, broad absorption feature centred on a wavelength of 1.26 micrometres. Such spectra have been detected using CRISM from parts of the Martian surface in the highlands of its southern hemisphere (Carter, J. & Poulet, F. 2013. Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nature Geoscience, v. 6, p. 1008-1012). The authors, from Chile and France, acknowledge that the plagioclase-rich rocks occur only in small patches, unlike the vast tracts on the Moon, and also that on Earth anorthosites are known to have formed by a variety of processes from far smaller magma systems than a veritable ocean of molten rock. Feldspars also show spectral features in the TIR, though not so distinctive, both plagioclase and alkali feldspars being very similar. Moreover, THEMIS deploys sensor for only 10 thermal wavebands, compared with 544 on CRISM.  A team of US remote sensers (Wray, J.J. and 8 others 2013. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, v. 6, p. 1013-1017) used both CRISM and THEMIS data. While noting resemblances to lunar anorthosites, they adopt a more cautious approach to the spectra and prefer the broad, ‘sack’ term ‘felsic rocks’. It seemed possible from their work that feldspar-rich magmas may have formed by partial melting of common andesitic crust noted from the Martian surface: high spatial resolution images of the occurrences bear some resemblance to outcrops of granitic rocks in arid environments on Earth. That is, there may be highly evolved rocks akin to terrestrial continental crust.

The interesting spectral observations on Mars can only be validated by actual rock samples. While rovers still operating on the Martian surface are well able to produce geochemical data that would petrologically characterise most rocks that they encounter, none of them is in a terrain suitable for resolving this particular issue. Yet, coincidentally, a meteorite found in West Africa shows hallmarks of having been blasted from the surface of Mars and sheds useful light on various hypotheses about the Martian crust http://earth-pages.co.uk/2013/11/21/a-glimpse-of-early-martian-crust/. It is a breccia that may represent the soil or regolith that accumulated from early impacts that shattered and melted surface materials, and it is extremely old: zircons yielded an age of 4428 Ma. The clasts set in a fine matrix consist of a variety of igneous rocks, none of which are anorthosites. Some are coarse grained, plutonic rocks containing both alkali feldspars and plagioclase, which match terrestrial monzonites; broadly speaking members of the granite family. Having formed from the ejecta of large impacts, such regolith materials represent the breadth of compositions across the planet and extending deep into its crust. This one suggests that anorthosites may have been rare on early Mars.