Geochemistry and economic history

At first reading this item’s title might seem to convey nonsense, yet there is an interesting relationship between these two very different disciplines. It concerns the pillaging of South and Central America by conquistadors who followed Columbus’s pioneering route across the North Atlantic in 1492. Aside from glory their motive was profit, and that was most conveniently concentrated in the form of gold and silver, to be found in abundance among the native people of what came to be known as the Americas. Once such plunder declined silver ores were soon discovered in Peru and Mexico, thereby maintaining the supply. Bullion or plate – so named from the fact that precious metal was most often transported in the form of sheets – was the major cargo of the great treasure ships in the period from 1515 to 1650. It is remembered in such geographic names as the Rio de la Plata separating modern Argentina and Uruguay.

Werner Herzog and Klaus Kinski shooting "...
Klaus Kinski, well into his role as an insane conquistador, disputes the script with director Werner Herzog while shooting “Aguirre, The Wrath Of God” (credit: Flickr p373)

It might seem that when such a vast amount of loot entered Europe the buying power of silver in particular would have fallen to result in inflation in the price of basic commodities, much as printing paper money may have that result nowadays. Indeed, over those roughly 150 years prices increased by as much as five times. Another factor was a tendency for silver supply to be augmented simply by debasing newly minted currency with other metals. Yet another is that over the same period China adopted silver as a money commodity increasing demand and so spurring exploration and advances in metallurgical extraction from new ores. Furthermore, the entire fabric of economy in Europe began to shift as feudalism began to be supplanted by capitalism at the close of Medieval times. The sheer complexity of competing factors has made the so-called ‘Price Revolution’ of the 16th and 17th centuries a thorny issue for economic historians. This is where geochemists found that they had a ‘shout’ in what Thomas Carlisle dubbed the ‘dismal science’.

Silver ores also contain lead and copper, which inevitably contaminate silver metal extracted from them. Depending on the processes involved in mineralisation the abundances of both metals vary from mine to mine. More tellingly, so do the relative proportions of the different Pb and Cu isotopes, Pb isotopes reflecting the age of the rocks in which ores are found. Inherited by coinage, the isotopes can be used to assess provenance of coins (Desaulty, A.-M. & Albarede, F. 2013. Copper, lead and silver isotopes solve a major economic conundrum of Tudor and early Stuart Europe. Geology, v. 41, p. 135-138), while the dates embossed on coins at the mint potential chart the course of the bullion trade. Desaulty and Albarede show that silver from the vast Potosí mine in modern Bolivia opened by conquistadors barely shows up in British coinage of the period, which is dominated with Mexican isotopic signatures as well as those from European mines. The latter account almost exclusively for the coinage of the late Medieval period. The conclusion is that the huge potential of Potosí served the needs of Spanish entrepreneurs though a trans-Pacific Spanish trade in which Bolivian silver bought goods from China, including gold. Spanish coins, on the other hand, show little of either Bolivian or Mexican silver, suggesting that Spanish world trade may well have used American bullion directly to purchase goods throughout its sphere of influence centred on the Philippines, while Mexican silver engaged in European trade and also found its way into the British economy by way of the slave trade.

Although Desaulty and Albarede claim to have solved a ‘conundrum’ it seems more likely that their revelations will make historians of post-Medieval economics scratch their heads even more.

Climate change and global volcanism

Geologists realized long ago that volcanic activity can have a profound effect on local and global climate. For instance, individual large explosive eruptions can punch large amounts of ash and sulfate aerosols into the stratosphere where they act to reflect solar radiation back to space, thereby cooling the planet. The 1991 eruption of Mt Pinatubo in the Philippines ejected 17 million tones of SO2; so much that the amount of sunlight reaching the Northern Hemisphere fell by around 10% and mean global temperature fell by almost 0.5 °C over the next 2 years. On the other hand, increased volcanic emissions of CO2 over geologically long periods of time are thought to explain some episodes of greenhouse conditions in the geological past.

Ash plume of Pinatubo during 1991 eruption.
Ash plume of Mount Pinatubo during its 1991 eruption. (credit: Wikipedia)

The converse effect of climate change on volcanism has, however, only been hinted at. One means of investigating a possible link is through the records of volcanic ash in sea-floor sediment cores in relation to cyclical climate change during the last million years. Data relating to the varying frequency volcanic activity in the circum Pacific ‘Ring of Fire’ has been analysed by German and US geoscientists (Kutterolf, S. et al. 2013. A detection of Milankovich frequencies in global volcanic activity. Geology, v. 41, p. 227-230) to reveal a link with the 41 ka periodicity of astronomical climate forcing due to changes in the tilt of the Earth’s axis of rotation. This matches well with the frequency spectrum displayed by changes in oxygen isotopes from marine cores that record the waxing and waning of continental ice sheets and consequent falls and rises in sea level. Yet there is no sign of links to the orbital eccentricity (~400 and ~100 ka) and axial precession (~22 ka) components of Milankovitch climatic forcing. An interesting detail is that the peak of volcanism lags that of tilt-modulated insolation by about 4 ka.

At first sight an odd coincidence, but both glaciation and changing sea levels involve shifting the way in which the lithosphere is loaded from above. With magnitudes of the orders of kilometres and hundreds of metres respectively glacial and eustatic changes would certainly affect the gravitational field. In turn, changes in the field and the load would result in stress changes below the surface that conceivably might encourage subvolcanic chambers to expel or accumulate magma. Kutterolf and colleagues model the stress from combined glacial and marine loading and unloading for a variety of volcanic provinces in the ‘Ring of Fire’ and are able to show nicely how the frequency of actual eruptions fits changing rates of deep-crustal stress from their model. Eruptions bunch together when stress changes rapidly, as in the onset of the last glacial maximum and deglaciations, and also during stadial-interstadial phases.

Whether or not there may be a link between climate change and plate tectonics, and therefore seismicity, is probably unlikely to be resolved simply because records do not exist for earthquakes before the historic period. As far as I can tell, establishing a link is possible only for volcanism close to coast lines, i.e. in island arcs and continental margins, and related to subduction processes, because the relative changes in stress during rapid marine transgressions and recessions would be large.. Deep within continents there may have been effects on volcanism related to local and regional ice-sheet loading. In the ocean basins, however, there remains a possibility of influences on the activity of ocean-island volcanoes, though whether or not that can be detected is unclear. Some, like Kilauea in Hawaii and La Palma in the Canary Islands, are prone to flank collapse and consequent tsunamis that could be influenced by much the same process. Another candidate for a climate-linked, potentially catastrophic process is that of destabilisation of marine sediments on the continental edge, as in the Storegga Slide off Norway whose last collapse and associated tsunami around 8 thousand years ago took place during the last major rise in sea level during deglaciation. The climatic stability of the Holocene probably damps down any rise in geo-risk with a link to rapid climate change, which anthropogenic changes are likely to be on a scale dwarfed by those during ice ages.

Toba ash and calibrating the Pleistocene record

Landsat image of Lake Toba, the largest volcan...
Landsat image of the Lake Toba caldera, Sumatra (credit: Wikipedia)

The largest volcanic catastrophe during the evolution of humans formed the huge caldera at Lake Toba near the Equator in Sumatra about 70 thousand years ago. Explosive action erupted 2800 cubic kilometres of magma, of which 800 km3 was deposited as thick ash across most of South Asia and the northern Indian Ocean. Sulfates derived from the gas emissions by Toba form clear ‘spikes’ in ice cores from both Greenland and Antarctica. Its effects were global through the mixing of sulfate aerosols in the stratosphere of both hemispheres, encouraged by its position close to the Equator. By reflecting incoming solar energy the aerosols resulted in a century-long 10°C fall in temperature over the Greenland ice cap. Such global cooling almost certainly affected anatomically modern humans, but it is possible that in South Asia Toba had an even more devastating effect.

Jwalapuram
The Toba ash at the Jwalapuram excavations in South India(Photo credit: Sanjay P. K. via Flickr)

At several sites in the Indian state of Tamil Nadu and in Malaysia Toba ash has buried artifacts that arguably may have been made by the earliest modern emigrants from Africa. Immediately above the ash are yet more tools that suggest humans did survive the eruption. Palaeoanthropologists have argued that the stress of Toba’s environmental effects on all hominins living at the time may have resulted in population crashes from which only the fittest individuals emerged. Major evolutionary changes have been ascribed to ‘bottlenecks’ of that kind to result in changes in human behaviour detectable from the archaeological record, such as the creation of completely new kinds of tools, art and language.  However, recent finds in Africa suggest that many such shifts are much older than Toba.

Perhaps Toba’s greatest contribution to palaeoanthropology is that it is an easily recognised event in the geological record, but compared with its sulfate spike in the Greenland ice core at ~71 ka the existing radiometric dates have uncertainties of several thousand years. Using the latest 40Ar/39Ar dating methods on fresh crystals of sanidine (volcanic K-feldspar) from new excavations in Malaysia these uncertainties have been reduced significantly (Storey, M. et al. 2012. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. Proceedings of the National Academy of Sciences, v. 109, p. 19684-18688 ). The sulfate peak and the ash can now be attributed to an age of 73.88 ± 0.32 ka; better than a golden spike in Late Pleistocene stratigraphy. The ice-cores have a check on chronology just beyond the limit of counting annual layering, as do ocean sediment cores for a time older than 14C can ever achieve. Toba now links too with events recorded by the precise U-Th series dating of cave deposits

A glimpse of the Hadean

There is something deeply unsatisfying, even untidy, about a geoscientific history from which the first half billion years is more or less a blank. Every likely stone has been turned and every isotope hurled as a curve-ball through a mass spectrometer in the quest for either direct evidence of Hadean events or an acrid whiff that lingers in later matter. All, that is, except for one…

Formed in a proposed supernova that likely helped trigger formation of the Sun and Solar System, 150Gd quickly decayed to produce 146Sm, which itself had a half-life of about 68 Ma. That is too short for any significant trace of that radioactive rare-earth element to remain in terrestrial rocks, but its daughter isotope 142Nd bears witness to its former existence. Checking the proportion of 142Nd against the heavier 144Nd is a means of assessing isotopic fractionation according to atomic mass between a solid source of a magma, and between residual magma and solids that crystallised from it.

A popular and well-supported view of the Hadean is that shortly after accretion of the Earth a stupendous impact left a deep ‘ocean’ of magma and flung off mass that produced the Moon. Solidification of that ocean, which would have involved denser minerals sinking and lighter ones rising to higher levels, has been suggested to have resulted in differentiation of the mantle into two portions, one enriched, the other depleted; an event on which the entire later geochemical history of our planet has depended. Should either part of the mantle melt again, the igneous rocks that would result should carry a neodymium isotope signature of one or the other. Little sign of either emerges from studies of igneous rocks younger than 2.5 Ga, but older rocks from Greenland that go back to 3.8 Ga demonstrate that almost all of them melted from the Hadean depleted mantle. Without rocks carrying 142Nd/144Nd ratios signifying the other side of the more ancient mantle division, an enriched source, the grand idea was flawed. But this one-sidedness appears now to have been balanced by other Archaean igneous rocks (Rizo, H. et al. 2012. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature, v. 491, p. 96-100).

3.8 billion year-old Amitsoq gneisses, West Greenland (Image credit: Stephen Moorbath, via Royal Society)

The analysed rocks are interesting for another reason, for they are 3.4 Ga old vertical sheets of basalt or dykes that cut through the more ancient west Greenland crust. They are the first evidence of a brittle crust that cracked under tension to be followed by mantle-derived magma. Some members of the Ameralik dyke swarm show just the isotopic signature predicted for the enriched member of the postulated fundamental mantle division. However, for some yet to be recognised reason, few post-Archaean rocks show any sign of widespread mantle heterogeneity. Such matters could be addressed with any confidence only after mass spectrometry allowed precise discrimination between isotopes of a whole variety of both common and rare elements. That was not so long ago, so a rich trove of future revelations can be anticipated.

Brittle-ductile deformation in subduction zones

Almenning, Norway. The red-brown mineral is ga...
Eclogite: the red-brown mineral is garnet, omphacite is green and there is some white quartz.(credit: Kevin Walsh via Wikipedia)

The ultra-dense form of basalt, eclogite made from mainly garnet and a strange high-pressure, low-temperature pyroxene (omphacite) that forms from plagioclase and some of the basalt’s ferromagnesian minerals, is possibly the most important rock there is. Without the basalt to eclogite transition that takes place when ocean-floor is subducted the density of the lithosphere would be insufficient to pull more ocean floor to destruction and maintain the planetary circulation otherwise known as plate tectonics. Since the transition involves the formation of anhydrous eclogite from old, cold and wet basalt water is driven upwards into the mantle wedge that lies over subduction zones. The encourages partial melting which creates andesite magmas and island arcs, the ultimate source of the Earth’s continental crust.

Despite being cold and rigid, subducted oceanic lithosphere somehow manages to be moved en masse, showing its track by earthquakes down to almost 700 km below the Earth’s surface.  A major ophiolite in the Western Alps on the Franco-Italian border escaped complete loss to the mantle by rebounding upwards after being subducted and metamorphosed under high-P, Low-T condition when the Alps began to form. So the basaltic crustal unit is eclogite and that preserves a petrographic  record of what actually happened as it descended (Angiboust, S. et al. 2012. Eclogite breccia in a subducted ophiolite: A record of intermediate depth earthquakes? Geology, v.  40, p. 707-710). The French geologists found breccias consisting of gabbroic eclogite blocks set in a matrix of serpentinite and talc. The blocks themselves are breccias too, with clasts of eclogite mylonite set in fine-grained lawsonite-bearing eclogite. The relationships in the breccias point to possibly earthquake-related processes, grinding and fracturing basalt as it was metamorphosed: an essentially brittle process, yet the shearing that forms mylonites does seem reminiscent of ductile deformation too.

The deformation seems to have been at the middle level of oceanic crust where oceanic basalt lavas formed above cumulate gabbro, their plutonic equivalents. Yet much deformation was also at the gabbro-serpentinite or crust-mantle boundary, where water loss from serpentine may have helped lubricate some of the processes. Clearly the Monviso ophiolite will soon become a place to visit for geophysicists as well as metamorphic petrologists.

Petrologists probe Minoan collapse

Partial panorama of Santorini and Thera caldera
Modern Santorini and the drowned Thera caldera. Image via Wikipedia

A burning topic for Bronze Age archaeologists, such as the delightful  Bettany Hughes – biographer of Helen of Troy, is the explosive collapse of the volcano Thera (modern Santorini) whose distant effects (ash and tsunamis)wiped out the Minoan civilisation of Crete around 1600 BCE, giving rise to Plato’s legend of Atlantis. It was a big one alright, hurling of the order of 60 km3 of pulverised magma skywards, though not the largest historic eruption: that involved 160 km3 from the Tambora volcano on Indonesia’s island of Sumbawa in 1815. The inhabitants of Santorini simply disappeared, after evacuating their homes during precursor earthquakes and small eruptions, which were then buried beneath many metres of tephra when Thera literally ‘blew its top’. Little ash fell on Crete, yet its northern coast shows clear signs of a major tsunami. The reason for such an engulfing wave is revealed by the nature of Thera’s eruption: after evacuating magma, the edifice collapsed to form a caldera clearly revealed by the elliptical bay around which the remnants stand as the various islands of Santorini.  Caldera formation would have displaced vast amounts of sea water.

Santorini has been well studied by volcanologists, still being an astonishingly awesome spectacle as well as preserving the full record of the eruption and the archaeology that it buried (http://santorini-eruption.org.uk/). Empirical research reveals four distinct eruptive phases probably over a period of a few months. The explosive force of the final catastrophe probably resulted from seawater reaching the sub-volcanic magma chamber: not a difficult feat of imagination. What has not been known is how the magma evolved over times leading up to the cataclysm, and that is a knotty issue for all volcanoes that pose a major threat because of evidence for repeated and perhaps cyclic activity. A new technique is now capable of lifting the veil on such purely magmatic evolution, and is based on the changes that took place in minerals that crystallised over lengthy periods while the magma cooled slowly at depth but was periodically added to (Druitt, T.H et al. 2012. Decadal to monthly timescale of magma transfer and reservoir growth at a caldera volcano. Nature, v. 482, p. 77-80).

Such phenocrysts are commonly found in fragments of pumice that make up Theran tephra, and they are commonly zoned in a concentric fashion, especially those of the mineral feldspar, each zone marking a phase of growth that occasionally traps samples of magma in the form of now glassy inclusions. The zones mark chemical changes in the magma as new pulses are added in the sub-volcanic chamber, and sometimes temperature changes and loss of gas. Although the zone boundaries a are expected to be sharp in terms of chemical differences, in practice they are blurred as a result of element diffusion at high temperatures. Diffusion is a predictable process and so the degree of blurring indicates the time at which a new zone formed relative to that of eruption and cooling, when diffusion would have stopped abruptly. Rates of high-temperature diffusion depend on the element concerned. So using a suite of trace elements in feldspar zones gives a variety of chronometers. A fast-diffusing element such as Mg can chart changes of the order of decades to months, while a more sluggish trace element – for instance titanium – can examine changes on longer timescales.

The results obtained by the authors present a surprise: although Thera had last erupted catastrophically 18 ka previously, additional magma recharged the volcano only in the last few decades before it extinguished life on Santorini and set the Minoan civilisation on a downward spiral. Indeed, magma continued to be added even in the last few months. Calderas, such as that at Yellowstone in the western US, to which are linked ancient ash layers covering areas hundreds and thousands of kilometres away, pose threats as large and even bigger than Thera. If Thera is anything to go by, they lie in repose long after an eruption and signs of recharge may herald eruption in the near future. The Yellowstone caldera, that has lain dormant for 640 ka is indeed showing signs of magmatic ‘stoking’, as the Earth’s surface there is slowly bulging. It produced ‘supereruptions’ that dwarfed Thera at 2.1 Ma (2500 km3), 1.3 Ma (280 km3) and 0.6 ka (1000 km3). For each of these and several other calderas there are abundant tuffs that carry phenocrysts, whose zonation is yet to be checked for signs of past behaviour by their local magma chambers.

Massive event in the Precambrian carbon cycle

English: Cyanobacteria
Cyanobacteria: earliest producers of oxygen in the Precambrian. Image via Wikipedia

The entire eukaryote domain of life, from alga to trees and fungi to animals, would not exist had it not been for the emergence of free oxygen in the oceans and atmosphere about 2.4 billion years ago; thanks in large part to the very much simpler photosynthetic blue-green bacteria. The chemistry behind this boils down to organisms being able to transfer electrons from elements and compounds in the inorganic world to build organic molecules incorporated in living things. Having lost electrons the inorganic donors become oxidised, for instance ferrous iron (Fe2+ or Fe-2) becomes ferric iron (Fe3+ or Fe-3) and  sulfide ions (S2-) become sulfate (SO42-) and the organic products that receive electrons principally involve reduction of carbon, on the OilRig principal – Oxidation involves loss of electrons, Reduction involves gain. Since the Great Oxygenation Event (GOE), ferric iron and sulfate ions now account for 75% of oxidation of the lithosphere and hydrosphere while free oxygen (O2) is a mere 2-3 % (Hayes, J.M. 2011. Earth’s redox history. Science. V. 334, p. 1654-1655; an excellent introduction to the geochemistry involved in the GOE and the carbon cycle). Free oxygen is around today only because more of it is produced than is consumed by its acting to oxidize ferrous iron and sulfide ions supplied mainly by volcanism, and carbon-rich material exposed to surface processes by erosion and sediment transport.

Eukaryote life has never been snuffed out for the last two billion years or so, but it has certainly had its ups and downs. To geochemists taking the long view oxygen might well seem to have steadily risen, but that is hardly likely in the hugely varied chemical factory that constitutes Earth’s surface environments, involving major geochemical cycles for carbon, iron, sulfur, nitrogen, phosphorus and so on, that all inveigle oxygen into reactions. Tabs can be kept on one of these cycles – that involving carbon – through the way in which the proportions of its stable isotopes vary in natural systems. If all geochemistry was in balance all the time, all materials that contain carbon would show the same proportions of 13C and 12C as the whole  Earth, but that is never the case. Living processes that fix carbon in organic compounds favour the lighter isotope, so they show a deficit of 13C relative to 12C signified by negative values of δ13C. The source of the carbon, for instance CO2 dissolved in sea water, thereby becomes enriched in 13C to achieve a positive value of δ13C, which may then be preserved in the form of carbonates in, for instance, fossil shells that ended up in limestones formed at the same time as organic processes were favouring the lighter isotope of carbon. Any organic carbon compounds that ocean-floor mud buried before they decayed (became oxidised) conversely would add their negative δ13C to the sediment. Searching for δ13C anomalies in limestones and carbonaceous mudrocks has become a major means of charting life’s ups and downs, and also what has happened to buried organic carbon through geological time.

A most interesting time to examine C-isotopes and the carbon cycle is undoubtedly the period immediately following the GOE, in the Palaeoproterozoic Era (2500 to 1600 Ma). From around 2200 to 2060 Ma the general picture is roughly constant, high positive values of δ13C (~+10‰): more organic carbon was being buried than was being oxidised to CO2. However, in drill cores through the Palaeoproterozoic of NW Russia carbonate carbon undergoes a sharp decline in its heavy isotope to give a negative δ13C  (~-14‰) while carbon in organic-rich sediments falls too (to~-40‰): definitely against the general  trend (Kump, L.R. et al. 2011. Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science. V. 334, p. 1694-1696). Oxygen isotopes in the carbonates affected by the depletion in ‘heavy’ carbon show barely a flicker of change: a clear sign that the 13C δ13C deficit is not due to later alteration by hydrothermal fluids, as can sometimes cause deviant δ13C in limestones. It is more likely that a vast amount of organic carbon, buried in sediments or dissolved in seawater was oxidised to CO2 faster than biological activity was supplying dead material to be buried or dissolved. In turn, the overproduction of carbon dioxide dissolved in seawater to affect C-isotopes in limestones. Such an event would have entailed a sharp increase in oxygen production to levels capable of causing the oxidation (~ 1% of present levels). Yet this was not the time of the GOE (2400 Ma) but 300-400 Ma later. A possible explanation is a burst in oxygen production by more photosynthetic activity, perhaps by the evolution of chloroplast-bearing eukaryotes much larger than cyanobacteria.

Mistaken conclusions from Earth’s oldest materials

Microscope projection close-upThe oldest materials on the planet are tiny zircon grains that were washed into conglomerate in Western  Australia about 2650 to 3050 Ma ago. It wasn’t the fact that the grains are zircons, which are among the most durable materials around, but the range of ages that they revealed when routinely analysed. U-Pb dating of detrital zircons is a well tested means of finding the provenance of sedimentary materials as an indicator of orogenic and igneous events that formed the crust from which they were eroded. In the original study of the Jack Hills zircons some showed ages that might reasonably have been expected from late sediments in an Archaean craton: around 3.5 billion years is about the maximum age for orogenic events there. What astonished all geoscientists was that a proportion of the grains gave ages of more than 4 billion years, some as old as 4.4 Ga: here was a window on the missing first half billion years of Earth history, the Hadean.

Subsequent work on yet more zircons confirmed the original age span but other kinds of analysis led to a variety of claims: that continental crust was around in abundance within 100 Ma of Earth having formed; geothermal heat =flow was not especially high;  liquid water was available for geological processes, including the origin of life; plate tectonics may have started early…. The topic has cropped up several times in EPN since the issue of 1 January 2001. Quite a lot of the claims emerged from studies of other minerals enclosed by the ancient zircons, such as quartz and micas, and now they have been checked again by geochemists from Western Australia (Rasmussen, B. et al. 2011. Metamorphic replacement of mineral inclusions in detrital zircons from Jack Hills, Australia: Implications for the Hadean Earth. Geology, v. 39, p. 1143-1146). It turns out that the inclusions formed at temperatures well below those of magmas, between 350 to 490°C: more like those of metamorphism. Indeed, uranium-bearing rare-earth phosphate minerals, xenotime and monazite, also locked in the zircons not only turn out to be metamorphic in origin too (both are also formed magmatically) but date to between 2700 and 800 Ma.

While the  Hadean zircon dates remain robust, a closer look at their inclusions shows that they did not remain geochemically closed systems thereafter. It was on the assumption of zircons being geological ‘time capsules’ that much of the excitement rested. Even using the presence of zircons from 4.4 Ga – they are most common in granites but do occur in mafic and intermediate igneous rocks – to suggest early ‘sialic’ continental crust is suspect. Despite having some tiny bits from Earth’s early days, it seems we are none the wiser.

The ultra-deep carbon cycle

A scattering of "brilliant" cut diam...
Image via Wikipedia

The presence of diamonds in the strange, potassium-rich, mafic to ultramafic igneous rocks known as kimberlites clearly demonstrates that there is carbon in the mantle, but it could have come from either biogenic carbon having moved down subduction zones or the original meteoritic matter that accreted to form the Earth. Both are distinct possibilities for which evidence can only be found within diamonds themselves as inclusions. There is a steady flow of publications focussed on diamond inclusions subsidised to some extent by companies that mine them (see Plate tectonics monitored by diamonds in EPN, 2 August 2011). The latest centres on the original source rocks of kimberlites and the depths that they reached (Walter, M.J. and 8 others 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science, v. 334, p. 54-57). The British, Brazilian and US team analysed inclusions in diamonds from Brazil, finding assemblages that are consistent with original minerals having formed below the 660 km upper- to lower-mantle seismic boundary and then adjusting to decreasing pressure as the kimberlite’s precursor rose to melt at shallower levels. The minerals – various forms of perovskite stable at deep-mantle pressures – from which the intricate composites of several lower-pressure phases exsolved suggest the diamonds originated around 1000 km below the surface; far deeper than did more common diamonds. Moreover, their geochemistry suggests that the inclusions formed from deeply subducted basalts of former oceanic crust.

Previous work on the carbon isotopes in ‘super-deep’ diamonds seemed to rule out a biogenic origin for the carbon, suggesting that surface carbon does not survive subduction into the lower mantle. In this case, however, the diamonds are made of carbon strongly enriched in light 12C relative to 13C, with δ13C values of around -20 ‰ (per thousand), which is far lower than that found in mantle peridotite and may have been subducted organic carbon. If that proves to be the case it extends the global carbon cycle far deeper than had been imagined, even by the most enthusiastic supporters of the Gaia hypothesis.

Pristine mantle and basalt floods

The Western Ghat hills at Matheran in Maharash...
Flood basalts of the Deccan Traps in Maharashtra State, India. Image via Wikipedia

Plot the ages of major extinctions against those of flood basalt events and you will get a straight line graph for six co-occurrences since 250 Ma, with very little error. Although the exact mechanism for mass death of species and families is argued over interminably, for those six, flood basalt events have to be deeply implicated. There again, every geologist and their aunties dispute the mechanisms behind monster basalt effusions that bury whole landscapes beneath flow after flow and create very distinctive landforms.  When they are eroded they form regularly stepped mountain sides, hence their formerly popular name trap basalts, after the Swedish word trappa meaning staircase.  There is a hint of cyclicity in their age distribution. But most important of all, no-one has witnessed these vast, pulsating events, the last having mantled the surroundings of the Columbia and Snake River catchments in the US states of Oregon and Washington between 14-17 Ma ago in the Middle Miocene. Some mark episodes of continental break-up, such as those flanking the Central Atlantic at the time of the end-Triassic (~200 Ma) mass extinction, while others are associated with hot spots, such as the Deccan Traps of western India erupted between 60-68 Ma as India drifted over the Reunion hot-spot and those of the Ethiopian highlands (30 Ma) associated with the Afar hot spot.

A common geochemical feature is beginning to emerge concerning the mantle from which the basalts were partially melted. Six sets of flood basalts exhibit the same trace-element and isotopic (Nd, Pb, Hf and He) characteristics, which suggest that their source had been little effected by previous extraction of crust-forming magmas; it is primitive and may be a relic of the original mantle formed at about 4500 Ma shortly after the catastrophic collision between the early Earth and a wandering Mars-sized planet that flung off the Moon (Jackson, M.G. & Carlson, R.W. 2011. An ancient recipe for flood basalt genesis. Nature, online (27 July 2011) doi:10.1038/nature10326). Although undepleted, the chemistry of the mantle source, worked out by back-calculation from that of the flood basalts, is not the same as the once-postulated original accretion of carbonaceous chondrite meteorites: conceivably a result of the chemical reworking when the Moon formed and the remaining Earth was probably molten from top to centre. The important feature is that the recast chemistry is rich in heat-producing elements compared with the source of ‘common-or-garden’ basalts that continually contribute to the ocean floors and island arcs. Wherever the relic mantle is, it is capable of heating itself, over and above the heating from the core and surrounding mantle, and thus likely to generate thermal and material plumes rising through the mantle.

Preceding the work of Jackson and Carlson, another group discovered that when flood basalt events since the Carboniferous are restored to their former geographic positions at the time they were erupted, they cluster above what are now two patches of more ductile mantle close to the cure-mantle boundary (Torsvik, T.H. et al. 2010. Diamonds sampled by plumes from the core–mantle boundary. Nature, v. 466, p. 352–355). If that is the source of basalt flood-forming plumes, then it is still there and, aside from giant impacts with extra-terrestrial projectiles, the most catastrophic upheavals of the Earth system inevitably will continue, perhaps in the next few million years.