Weak lithosphere delayed the formation of continents

There are very few tangible signs that the Earth had continents at the surface before about 4 billion years (Ga) ago. The most cited evidence that they may have existed in the Hadean Eon are zircon grains with radiometric ages up to 4.4 Ga that were recovered from much younger sedimentary rocks in Western Australia. These tiny grains also show isotopic anomalies that support the existence of continental material, i.e. rocks of broadly granitic composition, only 100 Ma after the Earth formed (see: Zircons and early continents no longer to be sneezed at; February 2006). So, how come relics of such early continents have yet to be discovered in the geological record? After all granitic rocks – in the broad sense – which form continents are so less dense than the mantle that modern subduction is incapable of recycling them en masse. Indeed, mantle convection of any type in the hotter Earth of the Hadean seems unlikely to have swallowed continents once they had formed. Perhaps they are hiding in another guise among younger rocks of the continental crust. But, believe me; geologists have been hunting for them, to no avail, in every scrap of existing continental crust since 1971 when gneisses found in West Greenland by New Zealander Vic McGregor turned out to be almost 3.8 Ga old. This set off a grail-quest, which still continues, to negate James Hutton’s ‘No vestige of a beginning …’ concept of geological time.

There is another view. Early continental lithosphere may have returned to the mantle piece by piece by other means. One that has been happening since the Archaean is as debris from surface erosion and its transportation to the ocean floor, thence to be subducted along with denser material of the oceanic lithosphere. Another possibility is that before 4 Ga continental lithosphere had far less strength than characterised it in later times; it may have been continually torn into fragments small enough for viscous drag to defy buoyancy and consign them into the mantle by convective processes. Two things seem to confer strength on continental lithosphere younger than 4 billion years: its depleted surface heat flow and heat-production that stem from low concentrations of radioactive isotopes of uranium, thorium and potassium in the lower crust and sub-continental mantle; bolstering by cratons that form the cores of all major continents. Three geoscientists at Monash University in Victoria, Australia have examined how parts of early convecting mantle may have undergone chemical and thermal differentiation (Capitanio, F.A. et al. 2020. Thermochemical lithosphere differentiation and the origin of cratonic mantle.  Nature, v. 588, p. 89-94; DOI: 10.1038/s41586-020-2976-3). These processes are an inevitable outcome of the tendency for mantle melting to begin as it becomes decompressed when pressure decreases when it rises during convection. Continual removal of the magmas produced in this way would remove not only much of the residue’s heat-producing capacity – U, Th and K preferentially enter silicate melts – but also its content of volatiles, especially water. Even if granitic magmas were completely recycled back to the mantle by the greater vigour of the hot, early Earth, at least some of the residue of partial melting would remain. Its dehydration would increase its viscosity (strength). Over time this would build what eventually became the highly viscous thick mantle roots (tectosphere) on which increasing amounts of the granitic magmas could stabilise to establish the oldest cratons. Over time more and more such cratonised crust would accumulate, becoming increasingly unlikely to be resorbed into the mantle. Although cratons are not zoned in terms of the age of their constituent rocks, they do jumble together several billion years’ worth of continental crust in what used to be called ‘the Basement Complex’.

Development of depleted and viscous sub-continental mantle on the early Earth – a precedes b – TTG signifies tonalite-trondhjemite-granodiorite rocks typical of Archaean cratons (Credit, Capitanio et al.; Fig 5)

Early in this process, heat would have made much of the lithosphere too weak to form rigid plates and the tectonics with which geologists are so familiar from the later parts of Earth’s history. The evolution that Capitanio et al. propose suggests that the earliest rigid plates were capped by Archaean continental crust. That implies subduction of oceanic lithosphere starting at their margins, with intra-oceanic destructive plate margins and island arcs being a later feature of tectonics. It is in the later, Proterozoic Eon that evidence for accretion of arc terranes becomes obvious, plastering their magmatic products onto cratons, further enlarging the continents.

Formation of continents without subduction

The formulation of the theory of plate tectonics provided plausible explanations for the growth of continental crust over time, among many other fundamental Earth processes. Briefly expressed, once basalt capped oceanic lithosphere is forced downwards at plate boundaries where plates move towards one another, beyond a certain penetration cool, moist basalt undergoes a pressure-controlled change of state. Its chemical constituents reassemble into minerals more stable under elevated pressure. In doing so, one outcome involves dehydration reactions the other being that the bulk composition is recast mainly in the form of high-pressure pyroxene and the mineral garnet: the rock eclogite. The density of the basaltic cap increases above that of the mantle. Gravity acts to pull the subducting slab downwards, this slab-pull force being the main driver of plate motions globally. Water vapour and other fluids shed by dehydration reactions rise from the subducted slab into the wedge of overlying mantle to change its conditions of partial melting and the composition of the magma so produced. This is the source of arc magmatism that persists at the destructive plate margin to increase the volcanic pile’s thickness over time. When magma is able to pond at the base of the new crust its fractional crystallisation produces dense cumulates of high-temperature mafic silicates and residual melt that is both lighter and more enriched in silica. Residual magma rises to add to the middle and upper crust while the cumulate-rich lower crust becomes less gravitationally stable, eventually to spall downwards by delamination. Such a process helps to explain the bulk low density of continental crust built up over time together with the freeboard of continents relative to the ocean floor: a unique feature of the Earth compared with all other bodies in the Solar System. It also accounts for the vast bulk of continental crust having remained at the surface since it formed: it rarely gets subducted, if at all.

One suggested model for pre-plate tectonic continent formation (credit, Robert J Stern https://speakingofgeoscience.org/2013/04/28/when-did-plate-tectonics-begin-on-earth-and-what-came-before/)

Tangible signs that such subduction was taking place in the past – eclogites and other high-pressure, low-temperature metamorphosed basalts or blueschists – are only found after 800 Ma ago. Before that time evidence for plate tectonics is circumstantial. Some geologists have argued for a different style of subduction in earlier times, plates under riding others at low angles. Others have argued for a totally different style of tectonics in Earth early history, marked by changes in bulk chemical composition of the continental crust at the Archaean-Proterozoic boundary. A new twist comes from evidence in the Archaean Pilbara Craton of Western Australia (Johnson, T.E. et al. 2017. Earth’s first stable continents did not form by subduction. Nature, v. 543, p. 239-242; doi:10.1038/nature21383). The authors found that basalts dated at about 3.5 Ga have trace-element geochemistry with affinities to the primitive basalts of island arcs. That makes them a plausible source for slightly younger felsic plutonic rocks with a tonalite-trondhjemite-granodiorite (TTG) compositional range (characteristic of Archaean continental crust). If the basalts were partially melted to yield 30% of their mass as new magma the melt composition would match that of the TTG crust. This would be feasible at only 30 km depth given a temperature increase with depth of at least 25° C per kilometre; more than the average continent geothermal gradient today but quite plausible with the then higher heat production by less decayed radioactive isotopes of uranium, thorium and potassium 3.5 Ga ago. This would have required the basalts to have formed a 30 km thick crust. However, the basalts’ geochemistry requires their generation by partial melting of earlier more mafic basalts rather than directly from the mantle. That early Archaean mantle melting probably did generate vast amounts such primary magma is generally acknowledged and confirmed by the common occurrence of komatiitic lavas with much higher magnesium content than common basalts of modern constructive margins. In essence, Johnson et al. favour thermal reworking of primitive Archaean crust, rather than reworking in a plate tectonic cycle.

More on continental growth and plate tectonics

See also

When did Plate Tectonics begin on Earth, and what came before?

So, when did plate tectonics start up?

Tiny, 4.4 billion year old zircon grains extracted from much younger sandstones in Western Australia are the oldest known relics of the Earth system. But they don’t say much about early tectonic processes. For that, substantial exposures of rock are needed, of which the undisputedly oldest are the Acasta gneisses 300 km north of Yellowknife in Canada’s North West Territories, which have an age of slightly more than 4 Ga. The ‘world’s oldest rock’ has been something of a grail for geologists and isotope geochemists who have combed the ancient Archaean cratons for 5 decades. But since the discovery of metasediments with an age of 3.8 Ga in West Greenland during the 1970s they haven’t made much headway into the huge time gap between Earth’s accretion at 4.54 Ga and the oldest known rocks (the Hadean Eon).

The Deccan Traps shown as dark purple spot on ...
Continental cratons (orange) where very-old rocks are likely to lurk. (credit: Wikipedia)

There have been more vibrant research themes about the Archaean Earth system, specifically the issue of when our planet settled into its modern plate tectonic phase A sprinkling of work on reconstructing the deep structural framework of Archaean relics has convinced some that opposed motion of rigid, brittle plates was responsible for their geological architecture, whereas others have claimed signs of a more plastic and chaotic kind of deformation of the outer Earth. More effort has been devoted to using the geochemistry of all the dominant rocks found in the ancient cratons, seeking similarities with and differences from those of more recent vintage. There can be little doubt that the earliest processes did form crust whose density prevented or delayed it from being absorbed into the mantle. Even the 4.4 Ga zircons probably crystallized from magma that was felsic in composition. Once trapped by buoyancy at the surface and subsequently wrapped around by similarly low density materials continental crust formed as a more or less permanent rider on the Earth’s deeper dynamics. But did it all form by the same kinds of process that we know to be operating today?

Plate tectonics involves the perpetual creation of rigid slabs of basalt-capped oceanic lithosphere at oceanic rift systems and their motions and interactions, including those with continental crust. Ocean floor cools as it ages and becomes hydrated by seawater that enters it. The bulk of it is destined eventually to oppose, head-to-head, the motions of other such plates and to deform in some way. The main driving force for global tectonics begins when an old, cold plate does deform, breaks, bends and drives downwards. Increasing pressure on its cold, wet basaltic top transforms it into a denser form: from a wet basaltic mineralogy (feldspar+pyroxene+amphibole) to one consisting of anhydrous pyroxene and garnet (eclogite) from which watery fluid is expelled upwards. Eclogite’s density exceeds that of mantle peridotite and compels the whole slab of oceanic lithosphere to sink or subduct into the mantle, dragging the younger parts with it. This gravity-induced ‘slab pull’ sustains the sum total of all tectonic motion. The water rising from it induces the wedge of upper mantle above to melt partially, the resulting magma evolves to produce new felsic crust in island arcs whose destiny is to be plastered on to and enlarge older continental masses.

Relics of eclogites and other high-pressure, low-temperature versions of hydrated basalts incorporated into continents bear direct and unchallengeable witness to plate tectonics having operated back to about 800 Ma ago. Before that, evidence for plate tectonics is circumstantial and in need of special pleading. Adversarial to-ing and fro-ing seems to be perpetual, between geoscientists who see no reason to doubt that Earth has always behaved in this general fashion and others who see room for very different scenarios in the distant past. The non-Huttonian tendency suggests an early, more ductile phase when greater radioactive heat production in the mantle produced oceanic crust so fast that when it interacted with other slabs it was hot enough to resist metamorphic densification wherever it was forced down. Faster production of magma by the mantle without slab-pull could have produced a variety of ‘recycling’ turnover mechanisms that were not plate-tectonic.

One thing that geochemists have discovered is that the composition of Archaean continental crust is very different from that produced in later times. In 1985 Ross Taylor and Scott McLennan, then of the Australian National University, hit on the idea of using shales of different ages as proxies for the preceding continental crust from which they had been derived by long erosion. Archaean and younger shales differed in such a way that suggests that after 2.5 Ga (the end of the Archaean) vast amounts of feldspar were extracted from the continent-forming magmas. This left the later Precambrian and Phanerozoic upper crust depleted in the rare-earth element europium, which ended up in a mafic, feldspar-rich lower crust. On the other hand, no such mass fractionation had left such a signature before 2.5 Ga. Another ANU geochemist, now at the University of Maryland, Roberta Rudnick has subsequently carried this approach further, culminating in a recent paper (Tang, M., Chen, K and Rudnick, R.L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, v. 351, p. 372-375). This uses nickel, chromium and zinc concentrations in ancient igneous and sedimentary rocks to track the contribution of magnesium (the ‘ma’ in ‘mafic’) to the early continents. The authors found that between 3.0 to 2.5 Ga continental additions shifted from a dominant more mafic composition to one similar to that of later times by the end of the Archaean. Moreover, this accompanied a fivefold increase in the pace of continental growth. Such a spurt has long been suspected and widely suggested to mark to start of true plate tectonics: but an hypothesis bereft of evidence.

A better clue, in my opinion, came 30 years ago from a study of the geochemistry of actual crustal rocks that formed before and after 2.5 Ga (Martin, H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, v. 14, p. 753-756). Martin showed that plutonic Archaean and post-Archaean felsic rocks of the continental crust lie in distinctly different fields on plots of their rare-earth element (REE) abundances. Archaean felsic plutonic rocks show a distinct trend of enrichment in light REE relative to heavy REE as measures of the degree of partial melting decreases, whereas the younger crustal rocks show almost constant, low values of heavy REE/light REE whatever the degree of melting. The conclusion he reached was that while in the post Archaean the source was consistent with modern subduction processes – i.e. partial melting of hydrated peridotite in the mantle wedge above subduction zones – but during the Archaean the source was hydrated, garnet-bearing amphibolite of basaltic composition, in the descending slab of subducted oceanic crust. Together with Taylor and McLennan’s lack of evidence for any fractional crystallization in Archaean continental growth, in contrast to that implicated in Post-Archaean times.

The geochemistry forces geologists to accept that a fundamental change took place in the generation and speed of continental growth at the end of the Archaean, marking a shift from a dominance of melting of oceanic, mafic crust to one where the upper mantle was the main source of felsic, low-density magmas. Yet, no matter how much we might speculate on indirect evidence, whether or not subduction, slab-pull and therefore plate tectonics dominated the Archaean remains an open question.

More on continental growth and plate tectonics

Mistaken conclusions from Earth’s oldest materials

Microscope projection close-upThe oldest materials on the planet are tiny zircon grains that were washed into conglomerate in Western  Australia about 2650 to 3050 Ma ago. It wasn’t the fact that the grains are zircons, which are among the most durable materials around, but the range of ages that they revealed when routinely analysed. U-Pb dating of detrital zircons is a well tested means of finding the provenance of sedimentary materials as an indicator of orogenic and igneous events that formed the crust from which they were eroded. In the original study of the Jack Hills zircons some showed ages that might reasonably have been expected from late sediments in an Archaean craton: around 3.5 billion years is about the maximum age for orogenic events there. What astonished all geoscientists was that a proportion of the grains gave ages of more than 4 billion years, some as old as 4.4 Ga: here was a window on the missing first half billion years of Earth history, the Hadean.

Subsequent work on yet more zircons confirmed the original age span but other kinds of analysis led to a variety of claims: that continental crust was around in abundance within 100 Ma of Earth having formed; geothermal heat =flow was not especially high;  liquid water was available for geological processes, including the origin of life; plate tectonics may have started early…. The topic has cropped up several times in EPN since the issue of 1 January 2001. Quite a lot of the claims emerged from studies of other minerals enclosed by the ancient zircons, such as quartz and micas, and now they have been checked again by geochemists from Western Australia (Rasmussen, B. et al. 2011. Metamorphic replacement of mineral inclusions in detrital zircons from Jack Hills, Australia: Implications for the Hadean Earth. Geology, v. 39, p. 1143-1146). It turns out that the inclusions formed at temperatures well below those of magmas, between 350 to 490°C: more like those of metamorphism. Indeed, uranium-bearing rare-earth phosphate minerals, xenotime and monazite, also locked in the zircons not only turn out to be metamorphic in origin too (both are also formed magmatically) but date to between 2700 and 800 Ma.

While the  Hadean zircon dates remain robust, a closer look at their inclusions shows that they did not remain geochemically closed systems thereafter. It was on the assumption of zircons being geological ‘time capsules’ that much of the excitement rested. Even using the presence of zircons from 4.4 Ga – they are most common in granites but do occur in mafic and intermediate igneous rocks – to suggest early ‘sialic’ continental crust is suspect. Despite having some tiny bits from Earth’s early days, it seems we are none the wiser.

Plate tectonics monitored by diamonds

eclogite
Norwegian Eclogite. Image by kevinzim via Flickr

For more than 30 years a debate has raged about the antiquity of plate tectonics: some claim it has always operated since the Earth first acquired a rigid carapace not long after a molten state following formation of the Moon; others look to the earliest occurrences of island-arc volcanism, oceanic crust thrust onto continents as ophiolite complexes, and to high-pressure, low-temperature metamorphic rocks. The earliest evidence of this kind has been cited from as far apart in time as the oldest Archaean rocks of Greenland (3.9 Ga) and the Neoproterozoic (1 Ga to 542 Ma). A key feature produced by plate interactions that can be preserved are high-P, low-T rocks formed where old, cool oceanic lithosphere is pulled by its own increasing density into the mantle at subduction zones to form eclogites and blueschists. In the accessible crust, both rock types are unstable as well as rare and can be retrogressed to different metamorphic mineral assemblages by high-temperature events at lower pressures than those at which they formed. Relics dating back to the earliest subduction may be in the mantle, but that seems inaccessible. Yet, from time to time explosive magmatism from very deep sources brings mantle-depth materials to the surface in kimberlite pipes that are most commonly found in stabilised blocks of ancient continental crust or cratons. Again there is the problem of mineral stability when solids enter different physical conditions, but there is one mineral that preserves characteristics of its deep origins – diamond. Steven Shirer and Stephen Richardson of the Carnegie Institution of Washington and the University of Cape Town have shed light on early subduction by exploiting the relative ease of dating diamonds and their capacity for preserving other minerals captured within them (Shirey, S.B. & Richardson, S.H. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from the subcontinental mantle. Science, v. 333, p. 434-436). Their study used data from over four thousand silicate inclusions in previously dated large diamonds, made almost worthless as gemstones by their contaminants. It is these inclusions that are amenable to dating, principally by the Sm-Nd method. Adrift in the mantle high temperature would result in daughter isotopes diffusing from the minerals. Once locked within diamond that isotopic loss would be stopped by the strength of the diamond structure, so building up with time to yield an age of entrapment when sampled.  The collection spans five cratons in Australia, Africa, Asia and North America, and has an age spectrum from 1.0 to 3.5 Ga. Note that diamonds are not formed by subduction but grow as a result of reduction of carbonates or oxidation of methane in the mantle at depths between 125 to 175 km. In growing they may envelop fragments of their surroundings that formed by other processes.

A notable feature of the inclusions is that before 3.2 Ga only mantle peridotites (olivine and pyroxene) are trapped, whereas in diamonds younger than 3.0 Ga the inclusions are dominated by eclogite minerals (garnet and Na-, Al-rich omphacite pyroxenes). This dichotomy is paralleled by the rhenium and osmium isotope composition of sulfide mineral inclusions. To the authors these consistent features point to an absence of steep-angled subduction, characteristic of modern plate tectonics, from the Earth system before 3 Ga. But does that rule out plate tectonics in earlier times and cast doubt on structural and other evidence for it? Not entirely, because consumption of spreading oceanic lithosphere by the mantle can take place if basaltic rock is not converted to eclogite by high-P, low-T metamorphism when the consumed lithosphere is warmer than it generally is nowadays – this happens beneath a large stretch of the Central Andes where subduction is at a shallow angle. What Shirey and Richardson have conveyed is a sense that the dominant force of modern plate tectonics – slab-pull that is driven by increased density of eclogitised basalt – did not operate in the first 1.5 Ga of Earth history. Eclogite can also form, under the right physical conditions, when chunks of basaltic material (perhaps underplated magmatically to the base of continents) founder and fall into the mantle. The absence of eclogite inclusions seems also to rule out such delamination from the early Earth system. So whatever tectonic activity and mantle convection did take place upon and within the pre-3 Ga Earth it was probably simpler than modern geodynamics. The other matter is that the shift to dominant eclogite inclusions appears quite abrupt from the data, perhaps suggesting major upheavals around 3 Ga. The Archaean cratons do provide some evidence for a major transformation in the rate of growth of continental crust around 3 Ga; about 30-40 percent of modern continental material was generated in the following 500 Ma to reach a total of 60% of the current amount, the remaining 40% taking 2.5 Ga to form through modern plate tectonics