‘Big data’ on water resources

 

Two petabytes (2×1015) is a colossal number which happens to approximate how much data has been collected in geocoded form by the Landsat Thematic Mapper and its successors since it was first launched in 1984. In tangible form these would occupy about half a million DVDs, weighing in at about 8 metric tonnes; ‘daunting’ comes nowhere near describing the effort needed to visually interpret this unique set of multi-date imagery. Using the Google Earth Engine, the free cloud-computing platform for big sets of image data which hosts all Landsat data and much else (but not yet the equally daunting ASTER data – roughly a million 136 Mb scenes) the 32 years-worth has been analysed for its content of hydrological information by the European Commission’s Joint Research Centre in Italy, with assistance from Google Switzerland. Using the various spectral characteristics of water in the visible and infrared region, the team has been able to assess the position on the continents of surface water bodies larger than 900 m2, both permanent and ephemeral, and how the various categories have changed in the last 32 years (Pekel, J.-F. et al. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, v. 540, p. 418-422; doi:10.1038/nature20584). The results are conveniently and freely available in their entirety at the Global Surface Water Explorer, an unparalleled and easy-to-use opportunity for water resource managers, wetland ecologists and geographers in general.

Among the revelations are sites and areas that have been subject to gains and losses in water availability, the extents of new and vanished permanent and seasonal water bodies and the conversion of one to the other. A global summary gives a net disappearance of 90 thousand km2 of permanent water bodies, about the area of Lake Superior, but exceeded by new permanent bodies totalling 184 thousand km2. There has been a net increase in permanent water on all continents except Oceania with a loss one percent (note that Antarctica and land north of the Arctic Circle were not analysed). More than 70 % of the losses are in the semi-arid Middle East and Central Asia (Iran, Iraq, Uzbekistan, Kazakhstan and Afghanistan), due mainly to overuse of irrigation, dam construction and long-term drought. Much of the increase in water occurrence stems from reservoir construction, but climate change may have played a part through increased precipitation and melting of high-altitude snow and ice, as in Tibet.

The Aral Sea in Uzbekistan and Kazakhstan has suffered dramatic loss of standing and seasonal water cover due to overuse of water for irrigation from the two main rivers, the Amu (Oxus) and Syr, that flow into it. Note the key to the colours that represent different categories of changes in surface water. (Credit: Global Surface Water Explorer)
The Aral Sea in Uzbekistan and Kazakhstan has suffered dramatic loss of standing and seasonal water cover due to overuse of water for irrigation from the two main rivers, the Amu (Oxus) and Syr, that flow into it. Note the key to the colours that represent different categories of changes in surface water. (Credit: Global Surface Water Explorer)
Many of the lakes in the northern Tibetan Plateau have grown in size during the last 32 years, mainly due to increased precipitation and snow melt. (Credit: Global Surface Water Explorer)
Many of the lakes in the northern Tibetan Plateau have grown in size during the last 32 years, mainly due to increased precipitation and snow melt. (Credit: Global Surface Water Explorer)

There are limitation to the accuracy of the various categories of change, one being the persistence of cloud cover in humid climates, another being the sometimes haphazard scheduling of Landsat Data capture (in some case that has depended on US Government interest in different areas of the world).

More detail on using remote sensing in exploration for and evaluation of water resources can be found here.

Global groundwater depth

The single most vital resource for human survival is clean, fresh drinking water. For a large proportion of the world’s population that right is not guaranteed, with harrowing consequences especially for children under 5-years old. Without careful processing surface water can only rarely be assumed fit to drink, especially in areas with dense populations of people, livestock or wildlife. Groundwater, on the other hand, has generally passed through aerated upper soil layers before it ended up below the water table in an aquifer. In that passage it is filtered and subject to various oxidising processes, both chemical and organic, that renders it a great deal more free of pathogens than standing or running surface water. Remarkably, a common mineral in any oxidised soil horizon is goethite, an iron hydroxide, which is capable of adsorbing a variety of potentially damaging ions.  So, of all fresh water that stored beneath the surface is the safest for people to drink.

By its very nature groundwater is hidden and requires both geological exploration and the drilling or digging of wells before it can become a resource. Areas underlain by simple stratiform sediments or lava flows present far less of a challenge than do geological settings with complex structures or that are dominated by ancient crystalline basement rocks. Time and again, however, crises in water supply arise from drought or sudden displacements of  populations a great deal faster than the pace of groundwater exploration or development needed to cope with shortages. Were the potential for subsurface supplies known beforehand relief would be both quicker and more effective than it is at present.

Image of simulated depth to water table for Africa (Courtesy of Y. Fan, Rutgers University, USA)
Image of simulated depth to water table for Africa (Courtesy of Y. Fan, Rutgers University, USA)

Thanks to three geoscientists from Rutgers University, USA and the University of Santiago de Compostela, Spain, (Fan, Y et al. 2013. Global patterns of groundwater table depth. Science, v. 339, p. 940-943) a start has been made in quantifying the availability of groundwater worldwide. They have modelled how the likely depth of the water table may vary beneath the inhabited continents. As a first input they digitised over 1.5 million published records of water table depths. Of course, that left huge gaps, even in economically highly developed areas. There is also bias in hydrogeological data towards shallow depths as most human settlements are above easily accessible groundwater.

To fill in the gaps and assess the deeper reaches of groundwater Fan et al. adapted an existing model that assumes groundwater depth to be forced by climate, topography and ultimately by sea-level. It is based on algorithms that predict groundwater flow after its infiltration from the surface. Such an approach leaves out drawdown by human interference and is at a spatial resolution that removes local complexities. The influence of terrain relies on the near-global elevation data acquired by NASA’s Shuttle Radar Topography Mission (SRTM) in February 2000, resampled to approximately 1 km spatial resolution, supplemented by the less accurate Japan/US ASTER GDEM produced photogrammetrically from stereo- image pairs. Other input data are assumptions about variation in hydraulic conductivity, which is reduced to a steady decrease with depth, models of infiltration from the surface based on global rainfall and evapotranspiration patterns and those of surface drainage and slopes. No attempt was made to input geological information

The results have been adjusted using actual water-table depths as a means of calibration across climate zones on all inhabited continents. The article itself is not accessible without a Science subscription, but the supplementary materials that detail how the work was done are available to the public, and include remarkably detailed maps of simulated water table depths for all continents except Antarctica.  The detail is much influenced by terrain to create textures that override climate, which might suggests that the results flatter to deceive. Yet the modelling does result in valleys and broad basins of unconsolidated sediment showing shallower depths that tallies with the tendency for less infiltration where slopes are steep and run-off faster. The fact that the degree of fit between model and known hydrogeology is high does suggest that at the regional scale the maps are very useful points of departure for more detailed work that brings in lithological and structural information.

Groundwater in Africa

English: Mwamanongu Village water source, Tanz...
Drinking water for many rural Africans often comes from open holes dug in the sand of dry riverbeds, and it is invariably contaminated. (Bob Metcalf on Wikipedia)

Sub-surface water supplies have rarely, if ever, figured in Earth Pages except in passing or in relation to the on-going crisis of arsenic pollution in drinking-water supplies. That is largely because of the paucity of groundwater publications that have a general interest. So it was welcome news to learn that hydrogeologists of the British Geological Survey and University College London have produced a continent-wide review of groundwater prospects for Africa, probably in most need of good news about water supplies (MacDonald, A.M. et al. 2012. Quantitative maps of groundwater in Africa. Environmental Research Letters, v. 7 doi:10.1088/1748-9326/7/2/024009. They used existing hydrogeological maps, publications and other publically available data to estimate total groundwater storage in a variety of aquifer types and the yield potentials of boreholes. Details can be seen at http://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/maps.html

Dominated by the vast sedimentary aquifers of Libya, Algeria, Egypt and Sudan, such as the Nubian Sandstone, around 0.66 million km3 may lie below the continental surface: more than 100 times the annually renewable freshwater resources, including the flows in  three of the world’s largest rivers, the Nile, Congo and Niger. Though only a fraction of this subsurface potential may be available for extraction through wells, the arithmetic, or rather the statistics, suggest that small diameter boreholes and simple handpumps, as well as traditional wells, can sustainably satisfy the drinking water needs of the bulk of Africa’s rural populations with yields of individual wells between 0.1 to 1 l s-1. However, groundwater use in irrigation and for large urban supplies demands well productivities an order of magnitude higher from thick sedimentary sequences, which rarely coincide in Africa with areas suitable for large-scale agriculture or existing cities and large towns. Both the humid tropical lowlands with thick unconsolidated sediments and the deep sedimentary rock aquifers beneath the Sahara and other arid areas match great groundwater potential with either little need for groundwater or virtually no potential for agricultural development and very few people. Moreover, the truly vast reserves of North Africa that are an order of magnitude or more greater than in any other countries are at such depths and so remote that development needs commensurately huge investment, in the manner of oil-rich Libya’s Great Man Made River Project projected at more than US$25 billion investment. To say that reserves, convenience and yields are inequitably distributed in Africa would understate the hydrogeological difficulties of the continent.

Average well productivity predicted by MacDonald et al from Africa’s regional geology

Much of Africa has crystalline basement at the surface that has useful yields (>0.1  l s-1) only when deeply weathered, and even then rarely yields better than 1 l s1. An exception to this general rule is where basement has been shattered by large faults and fractures. Sedimentary cover is generally thin across the continent and with highly variable yield potential. The other issue is that of sustainability, for if extraction rates exceed those of recharge then groundwater effectively becomes a non-renewable resource. About half of the African surface, mainly in its western equatorial region, has sufficient rainfall and infiltration potential to outpace universally high evapotranspiration to give recharge rates of more than 2.5 cm of annual rainfall. For all the areas repeatedly hit by drought and famine, average recharge through the surface that escapes being literally blown away on the wind is less than half a centimetre.

To have synopses of all the important issues surrounding African groundwater – the best choice for safe domestic supplies in hot, poor areas – would seem to be very useful to those engaged in development and relief strategies; i.e. to governments, the UN ‘family’ and World Bank. But there are important caveats. An obvious one is the antiquity of many of the surveys drawn on by MacDonald et al. Some 23 out of 33 were published more than 20 years ago using data that may be a great deal older: such has been the snail-like pace of publication by all geological surveys, including BGS. That is compounded by the small scale of the maps (mainly smaller than 1:1 million) and the extremely sparse geophysical data concerning subsurface geology across most of Africa. ‘Quantitative’ is not the adjective to use here, for unlike in most of the developed world, groundwater reserves and locations in Africa have not been measured, but estimated from pretty meagre data. In fact to be brutally realistic, most of the source maps are based on educated guesswork by a few hard-pressed geoscientists once personally responsible for areas that would cripple most of their colleagues working in say Europe or North America.

If there is a truism about water exploration in Africa, outside the well-watered parts, it is this: sink a well at random, and it will probably be dry. The stats may well be encouraging, as MacDonald et al. clearly believe, but finding useful groundwater supplies relies on a great deal more. Outside cities, people survive as regards groundwater often as a result of traditional means of water exploration and well digging: they or at least some locals are experts at locating shallow sources. Yet to improve their access to decent water in the face of both rising populations and climate change demands sophisticated exploration techniques based on geological knowledge. Most important is to ensure supplies to existing communities, whose locations do not necessarily match deeper groundwater availability, bearing in mind that a universal problem for most African villagers is the sheer distance to wells with safe water. Rigs used to drill tube wells are expensive to hire, so the likelihood of success needs to be maximised. In the absence of large-scale (1:50 000) geological maps – rarities throughout Africa – only skilled hydrogeological interpretation of aerial or satellite images followed-up by geophysical ground traverses offer that vital confidence.

Geologically useful ASTER image of the Danakil Block in Eritrea/Ethiopia, showing Mesozoic and Recent sedimentary aquifers and crystalline basement (Steve Drury)

In fact, thanks to the joint US-Japan ASTER system carried in sun-synchronous orbit, geologically-oriented image data are available for the whole continent. Interpretation requires some skills but few if any beyond learning in a practical, field setting. Indeed, the African surface in its arid to semi-arid parts, most at risk of drought and famine, lends itself to rapid hydrogeological reconnaissance mapping using ASTER data. Given on-line training in image interpretation, a ‘crowd-source’ approach coordinating many interpreters could complete a truly life-giving and easily available map base for local people to focus their own well-construction programmes.