Climate change has shifted Earth’s poles

The shifting position of the Tropic of Cancer in Mexico due to nutation from 2005 to 2010 (Credit: Roberto González, Wikimedia Commons)

First suggested by Isaac Newton and confirmed from observations by Seth Chandler in 1891, the Earth’s axis of rotation and thus its geographic poles wander in much the same manner as does the axis of a gyroscope, through a process known as nutation. The best-known movement of the poles – Chandler wobble – results in a change of about 9 metres in the poles’ positions every 433 days, which describes a rough circle around the mean position of each pole. Every 18.6 years the orbital behaviour of the Moon results in a substantially larger shift, illustrated by a shift in the position of the circles of latitude, as above. Essentially, nutation results from the combined effects of gravitational forces imposed by other bodies. The axial precession cycle of 26 thousand years that is part of the Milankovich effect on long-term climate forcing is a result of nutation. But the Earth’s own gravitational field changes too, as mass within and upon it shifts from place to place. So mantle convection and plate tectonics inevitably change Earth’s mode of rotation, as do changes in the Earth’s molten iron core.

The most sensitive instrument devoted to measuring changes in Earth’s gravity is the tandem of two satellites known as the Gravity Recovery and Climate Experiment or GRACE. Among much else, GRACE has revealed the rate of withdrawal of groundwater from aquifers in Northern India and areas of mass deficit over the Canadian Shield that resulted from melting of its vast ice sheet since 18 ka ago (see: Ice age mass deficit over Canada deduced from gravity data, July 2007). Further GRACE data have now confirmed that more recent melting of polar glaciers due to global warming underlie an unusual reversal and acceleration of polar wandering since the 1990s (Deng, S. et al. 2021. Polar drift in the 1990s explained by terrestrial water storage changes. Geophysical Research Letters, v. 48, online article e2020GL092114; DOI: 10.1029/2020GL092114). In 1995 polar drift changed from southwards to eastwards, and increased by 17 times from its mean speed from 1981 to 1995. That tallies with an increase in the flow of glacial meltwater from polar regions and also with changes in the mass balance of surface and subsurface water at lower latitudes, especially in India, the USA and China where groundwater pumping for irrigation is on a massive scale.

Clearly, human activity is not only changing climate, but also our planet’s astronomical behaviour. That connection, in itself, is enough to set alarm bells ringing, even though the axial shift’s main tangible effect is to change the length of the day by a few milliseconds. Polar wandering has been documented for the last 176 years. Conceivably, data on shifts in past direction and speed may allow climatic changes throughout the industrial revolution to be assessed independently of meteorological data and on a whole-planet basis.

Ses also: Climate has shifted the axis of the Earth (EurekaAlert, 22 April 2021)