Climate out of control after the Permian-Triassic mass extinction

The snuffing out of up to 90 percent of all terrestrial and marine species at the end of the Permian (252 Ma) was the outcome of lethal climatic warming. It probably stemmed from a stupendous episode of flood basalt volcanism and intrusions in what is now Siberia that burned vast amounts of peat or coal in the basin that the flows filled (see: Coal and the end-Permian mass extinction; March 2011). The carbon dioxide so released created planetary hyperthermia and toxic acid rain. For at least five million years Earth was an almost sterile world, a notable absence being dense vegetation on the land surface – the Early Triassic is devoid of coal, whereas there is plenty of Late Permian age. Much the same slow recovery of life is found in meagre collections of land and marine animal fossils of that age. Yet, other mass extinctions were followed by recovery and species diversification at a much faster pace.

One conceivable explanation could be the near absence of vegetation whose photosynthesis and burial would otherwise draw down CO2 and the same goes for its marine equivalent phytoplankton. But there is a powerful inorganic means of carbon sequestration: silicate weathering. The chemistry depends on carbon dioxide dissolved in water. For simple silicates it can be expressed as:

2CO2 + H2O + CaSiO3 → Ca2+ + 2HCO3 + SiO2.

The higher the ambient temperature, the faster such reactions proceed. Most silicates are more complex and many common ones, such as feldspars, include aluminium, so that another product of weathering is insoluble, fine-grained clay minerals. So various soluble metal ions (Ca, Mg, K, Na etc), dissolved bicarbonate ions, silica in various guises and clays eventually end up in the sea. Once there, it is possible for them to recombine, as for instance calcium and bicarbonate ions:

Ca2+ + 2HCO3→ CaCO3 + CO2 + H2O

Despite some CO2 gas being released, this reaction results in a net sequestration of carbon in calcium carbonate. Incidentally, the same kind of chemical reaction occurs in the soils produced by weathering. The carbonate may cement soils to form a hard crust of caliche or ‘calcrete’. Chemical weathering enhanced by a hot climate, it might seem, should reduce the greenhouse effect quickly: a feedback mechanism that normally stabilises climate. But that did not happen after the P-Tr extinction event, thereby stressing all remaining life forms. A group of scientists at the University of Waikato in New Zealand have developed a possible explanation for this potentially fatal hazard for life on Earth (Isson, T.T. et al. 2022. Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth. Nature Communications, v. 13, article 3509; DOI: 10.1038/s41467-022-31128-3). It focuses on the silica (SiO2) released by chemical weathering, which enters the ocean in the form of a colloid: Si(OH)4, a form of silicic acid known as ‘reactive silica’. Under ‘normal’ conditions, this is removed by organisms, such as diatoms and radiolaria, and is constantly recycled on a time scale of about 400 years, some contributing to deep-ocean oozes in the form of chert. But, like all other marine organisms, they too were victims of the P-Tr mass extinction.

Examples of marine radiolaria (top)

Reactive silica colloids in seawater also participate in inorganic chemical reactions, combining with dissolved metal ions to form complex hydrated aluminosilicates, i.e. more clay minerals. The reactions change the alkalinity of seawater. As a result dissolved HCO3ions transform to CO2 gas and water. Despite the complexity of the chemistry that interweaves the carbon and silicon cycles, there is a simple conclusion. If the abundance of silica-secreting marine organisms falls drastically while continental weathering continues to deliver silica, clay-mineral formation on the ocean floor results in release of CO2 that reverses the effect of enhanced weathering and thus maintains hyperthermal conditions. The other outcome is that less chert and flint granules form Terry Isson and colleagues examined the varying proportion of chert in cores through Lower Triassic marine sediments. A ‘chert gap’characterises the 4 to 6 Ma following the P-Tr boundary event. This can be explained in part by extinction of silica-secreting organisms and by inorganic reactions converting the reactive silica that enhanced weathering delivered to the oceans to clay minerals. This supports the idea that the inorganic part of the silica cycle maintained greenhouse conditions in the absence of organic ‘competition’ for reactive silica. Many other biogeochemical cycles link biological and chemical processes that combine to affect climate: involving phosphorus, nitrogen and iron, to name but three.

Life at the battery terminal

Mussels of species Bathymodiolus childressi (B...
Hydrothermal-vent mussel Bathymodiolus. Image via Wikipedia

Having an interior that is dominated by reducing conditions and oxidising surface environments since free oxygen gradually permeated from its initial build up in the atmosphere to the ocean depths, the Earth has been likened to a massive self-charging battery. Electrons flow continually as a consequence of the nature of the linked oxidation-reduction: in terms of electrons, oxidation involves loss while reduction involves gain (the OILRIG mnemonic). Although there are natural electrical currents, most of the electron flow is in the form of reduced compounds rich in electrons that make their way through the flow of fluids from the deep Earth – effectively an anode – towards the surface  where the reduced compounds lose electrons to create the equivalent of a cathode. Reduction-oxidation (redox) is therefore a power source. Inorganic reactions, such as the precipitation on the sea floor of sulfides from hydrothermal fluids at ‘black smokers’ dissipate energy. Yet the power has considerable potential for organic life. Some bacteria oxidise hydrogen sulfide carried by hydrothermal fluids and others do the same to upwelling methane. In 1977 a teeming biome of worms, molluscs and higher animals was discovered in a totally dark environment around ocean-floor vents. It soon became clear that it could only subsist on chemical energy of this kind, rather than any form of photosynthesis. The key to some metazoans’ success had to be symbiosis with bacteria that could perform the chemical tricks possible in the cathode region of the Earth’s electron flow. There are several candidate compounds: H2S, CH4, NH4, metal ions and even hydrogen gas.

As hydrothermal fluids cycle ocean water into the basaltic crust and underlying peridotite mantle, they not only hydrate the olivines and pyroxenes that dominate the oceanic lithosphere but trigger other reactions one of whose products is hydrogen. As well as a reaction being eyed by those keen on a cheap source of clean fuel, it generates more energy potential for biological metabolism in the guise of hydrogen than those which form other common compound in the returning fluids. Although the nature of hydrogen’s organic use has been elusive, it has now come to light in a surprising guise (Petersen, J.M. and 14 others 2011. Hydrogen is an energy source for hydrothermal vent symbioses. Nature, v. 476, p. 176-180).

One highly successful animal in ocean-floor hot spring systems is a mussel called Bathymodiolus. Genetic experiments by the German-French-US team revealed that a gene known as hupL is present in the mussels’ gill tissue; a gene found in bacteria that use either carbon monoxide or hydrogen as an electron donor. The hupL gene encodes for enzymes known as hydrogenases that are needed to set off the reaction H2 = 2H+ + 2e that provides electrons needed in bacterial metabolism; a sort of living fuel cell. Hydrogen-using bacteria interact symbiotically with the mussels, which would otherwise be unable to live in the pitch black environment. Genomic sequencing of tube worms and shrimps that occur in the vent communities also contain the bacterial hupL gene. Hydrogenase enzymes are proteins with an iron-nickel core, and probably evolved far back in bacterial evolution around metal-rich hot springs. Interesting as the specific detail of hydrogen-based symbiosis is, the general concept of Earth’s redox systems’ having battery-like behaviour is very useful. On land groundwater sometimes comes into contact with sulfide ore bodies that are oxidised to yield hydrogen and sulfate ions ,while the groundwater is reduced: a battery comes into being with a cathode in the aerated groundwater and electrons flow from the unaltered orebody towards it. Such currents are useful in revealing hidden orebodies using the ‘self-potential’ or SP method. Indeed the downward change from oxidising to reducing groundwater, caused by the redox reactions involved in weathering and soil formation also result in weak negative and positive ‘electrodes’ with a sluggish flow of compounds that bacteria can exploit and thereby encourage metazoan life through symbiosis. In doing so, changes in redox conditions affect the inorganic load of the slowly moving groundwater so that reduced metal ions can be precipitated once they rise into the oxidising horizon. The general enrichment of the upper horizons of soils in iron oxides and hydroxides, and metal depletion in lower horizons probably stem from the ‘Earth battery’ produced by an interplay between inorganic and organic redox reactions. Be on the look-out for more on this topic as the quest for hydrogen fuels becomes more urgent. A former colleague, Gordon Stanger, investigating groundwater in the Semail ophiolite of the Oman for his PhD in the 1970s discovered to his surprise that in outcrops of the mantle sequence there were springs from which hydrogen bubbled freely: fortunately he was not a smoker…