Was the earliest human ancestor a European?

Charles Darwin famously suggested that humans evolved from apes, and since great apes (chimpanzees, bonobos and gorillas) live in Africa he reckoned it was probably there that the human ‘line’ began. Indeed, the mitochondrial DNA of chimpanzees (Pan troglodytes) is the closest to that of living humans. Palaeoanthropology in Africa has established evolutionary steps during the Pleistocene (2.0 to 0.3 Ma) by early members of the genus Homo: H. habilis, H. ergaster, H. erectus; H. heidelbergensis and the earliest H. sapiens. Members of the last three migrated to Eurasia, beginning around 1.8 Ma with the individuals found at Dmanisi in Georgia. The earliest African hominins emerged through the Late Miocene (7.0 to 5.3 Ma): Sahelanthropus tchadensi, Orrorin tugenensis and Ardipthecus kadabba. Through the Pliocene (5.3 to 2.9 Ma) and earliest Pleistocene two very distinct hominin groups appeared: the ‘gracile’ australopithecines (Ardipithecus ramidus; Australopithecus anamensis; Au. afarensis; Au. africanus; Au. sediba) and the ‘robust’ paranthropoids (Paranthropus aethiopicus; P. robustus and P. boisei). The last of the paranthropoids cohabited East Africa with early homo species until around 1.4 Ma. Most of these species have been covered in Earth-logs and an excellent time line of most hominin and early human fossils is hosted by Wikipedia.

All apes, including ourselves, and fossil examples are members of the Family Hominidae (hominids) which refers to the entire world. A Subfamily (Homininae) refers to African apes, with two Tribes. One, the Gorillini, refers to the two living species of gorilla. The other is the Hominini (hominins) that includes chimpanzees, living humans and all fossils believed to be on the evolutionary line to Homo. The Tribe Hominini is defined to have descended from the common ancestor of modern humans and chimps, and evolved only in Africa. As the definition of hominins stands, it excludes other possibilities! The Miocene of Africa before 7.2 Ma ‘goes cold’ as regards the evolution of hominins.  There are, however fossils of other African apes in earlier Miocene strata (8 to 18 Ma) that have been assigned to the Family Hominidae, i.e. hominids, of which more later.

Much has been made of using a ‘molecular clock’ to hint at the length of time since the mtDNA of living humans and chimps began to diverge from their last common ancestor. That is a crude measure at it depends entirely on assuming a fixed rate at which genetic mutation in primates take place. Many factors render it highly uncertain, until ancient DNA is recovered from times before about 400 ka, if ever. The approach suggests a range from 7 to 10 Ma, yet the evolutionary history of chimps based on fossils is practically invisible: the earliest fossil of a member of genus Pan is from the Middle Pleistocene (1.2 to 0.8 Ma) of Kenya. Indeed, we have little if any clue about what such a common ancestor looked like or did. So the course of human evolution relies entirely on the fossil sequence of earlier African hominins and comparing their physical appearances. Each species in the African time line displays two distinctive features. All were bipedal and had small canine teeth.  Modern chimps habitually use knuckle walking except when having to cross waterways. As with virtually all other primates, fossil or living, male chimps have large, threatening canines. In the absence of ancient DNA from fossils older than 0.4 Ma these two features present a practical if crude way of assessing to when and where the hominin time line leads.

In 2002 a Polish geologist on holiday at the beach at Trachilos on Crete discovered a trackway on a bedding plane in shallow-marine Miocene sediments. It had been left by what seems to have been a bipedal hominin. Subsequent research was able to date the footprints to about 6.05 Ma. Though younger than Sahelanthropus, the discovery potentially challenges the exclusivity of hominins to Africa. Unsurprisingly, publication of this tentative interpretation drew negative responses from some quarters. But the discovery helped resurrect the notion that Africa may have been colonised in the Miocene by hominins that had evolved in Europe. That had been hinted at by the 1872 excavation of Oreopithecus bambolii from an Upper Miocene (~7.6 Ma) lignite mine in Tuscany, Italy – a year after publication of Darwin’s The Descent of Man.

Lignites in Tuscany and Sardinia have since yielded many more specimens, so the species is well documented. Oreopithecus could walk on two legs, its hands were capable of a precision grip and it had relatively small canines. Its Wikipedia entry cautiously refers to it as ‘hominid’ – i.e. lumped with all apes to comply with current taxonomic theory (above). In 2019 another fascinating find was made in a clay pit in Bavaria, Germany. Danuvius guggenmosi lived 11.6 Ma ago and fossilised remains of its leg- and arm bones suggested that it could walk on two legs: it too may have been on the hominin line. But no remains of Danuvius’s skull or teeth have been found. There is now an embarrassment of riches as regards Miocene fossil apes from Europe and the Eastern Mediterranean (Sevim-Erol, A. and 8 others 2023. A new ape from Türkiye and the radiation of late Miocene hominines. Nature Communications Biology, v. 6, article  842.; DOI: 10.1038/s42003-023-05210-5). A number of them closely resemble the earliest fossil hominins of Africa, but most predate the hominin record there by several million years.

Phylogenetic links between fossils assigned to Hominidae found in Africa and north of the Mediterranean Sea. (Credit: Sevim-Erol et al. 2023, Fig 5)

Ayla Sevim-Erol of Ankara University, Turkiye and colleagues from Turkiye, Canada and the Netherlands describe a newly identified Miocene genus, Anadoluvius, which they place in the Subfamily Homininae dated to around 8.7 Ma. Fragments of crania and partial male and female mandibles from Anatolia show that its canines were small and comparable with those of younger African hominins, such as Ardipithecus and Australopithecus. But limb bones are yet to be found. Around the size of a large male chimpanzee, Anadoluvius lived in an ecosystem remarkably like the grasslands and dry forests of modern East Africa, with early species of giraffes, wart hogs, rhinos, diverse antelopes, zebras, elephants, porcupines, hyenas and lion-like carnivores. Sevim-Erol et al. have attempted to trace back hominin evolution further than is possible with African fossils. They compare various skeletal features of different fossils and living genera to assess varying degrees of similarity between each genus, applied to 23 genera. These comprised 7 hominids from the African Miocene, 2 early African hominins (Ardipithecus and Orrorin) and 10 Miocene hominids from Europe and the Eastern Mediterranean. They also assessed similarities with 4 living genera, Homo, orang utan (Pongo), gorilla and chimp (Pan).

The resulting phylogeny shows close morphological links within a cluster (green ‘pools’ on diagram) of non-African hominids with the African hominins, gorillas, humans and chimps. There are less-close relations between that cluster and the earlier Miocene hominids of Africa (blue ‘pool’) and the possible phylogeny of orang utans (orange ‘pool’). Sevim-Erol et al. note that African hominins are clearly more similar and perhaps more closely related to the fossils of Europe and the Eastern Mediterranean than they are to Miocene African hominids. This suggests that evolution among the non-African hominids ceased around the end of the Miocene Epoch north of the Mediterranean Sea. But it may have continued in Africa. Somehow, therefore, it became possible late in Miocene times for hominids to migrate from Europe to Africa. Yet the earlier, phylogenetically isolated African hominids seem to have ‘crashed’ at roughly the same time. Such a complex scenario cannot be supported by phylogenetic studies alone: it needs some kind of ecological impetus.

The Mediterranean Basin at the end of the Miocene Epoch when the only water was in the deepest parts of the basin. (Credit: Wikipedia, Creative Commons)

Following a ‘mild’ tectonic collision between the African continent and the Iberian Peninsula during the late Miocene connection between the Atlantic Ocean and the Mediterranean Sea was blocked from 6.0 to 5.3 Ma. Except for its deepest parts, seawater in the Mediterranean evaporated away to leave thick salt deposits. Rivers, such as the Rhône, Danube, Dneiper and Nile, shed sediments into the exposed basin. For 700 ka the basin was a fertile, sub-sea level plain, connecting Europe and North Africa over and E-W distance of 3860 km. There was little to stop the faunas of Eurasia and Africa migrating and intermingling, at a critical period in the evolution of the Family Hominidae. One genus presented with the opportunity was quite possibly the last common ancestor of all the hominins and chimps. The migratory window vanished at the end of the Miocene when what became the Strait of Gibraltar opened at 5.3 to allow Atlantic water. This resulted in the stupendous Zanclean flood with a flow rate about 1,000 times that of the present-day Amazon River. An animation of these events is worth watching

Tracing hominin evolution further back

The earliest hominin known from Africa is Sahelanthropus tchadensis, announced in 2002 by Michel Brunet and his team working in 7 Ma old Miocene sediments deposited by the predecessor to Lake Chad in the central Sahara Desert. Only cranial bones were present. From the rear the skull and cranial capacity resembled what might have been regarded as an early relative of chimpanzees. But its face and teeth look very like those of an australopithecine. Sadly, the foramen magnum – where the cranium is attached to the spine – was not well preserved, and leg bones were missing. The position of the first is a clue to posture; forward of the base of the skull would suggest an habitual upright posture, towards the rear being characteristic of knuckle walkers. Some authorities, including Brunet, believe Sahelanthropus may have been upright, but others strongly contest that. The angle of the neck-and-head ball joint of the femur (thigh bone), where the leg is attached to a socket on the pelvis to form the hip joint is a clue to both posture and gait. The earliest clear sign of an upright, bipedal gait is the femur of a fossil primate from Africa – about a million years younger than Sahelanthropus, found in the Tugen Hills of Kenya. Orrorin tugenensis was described from 20 bone fragments, making up: a bit of the other femur, three hand bones; a fragment of the upper arm (humerus); seven teeth; part of the left and right side of a lower jawbone (mandible). Apart from the femur that retains a neck and head and signifies an upright gait, only the teeth offer substantial clues. Orrorin has  a dentition similar to humans apart from ape-like canines but significantly smaller in size – all known hominins lack the large canines, relative to other teeth. Despite being almost 2 Ma older than Ardipithecus ramidus, the first clearly bipedal hominin, Orrorin is more similar to humans than both it and Australopithecus afarensis, Lucy’s species.

Oreopithecus_bambolii_1
Near-complete skeleton of Oreopithecus bambolii from Italy (credit: Wikipedia Commons)

DNA differences suggest that human evolution split from that of chimpanzees about 12 Ma ago. Yet the earlier Miocene stratigraphy of Africa has yet to provide a shred of evidence for earlier members of either lineage or a plausible last common ancestor of both. In 1872, a year after publication of Charles Darwin’s The Descent of Man parts of an extinct primate were found in Miocene sediments in Tuscany and Sardinia, Italy. In 1950 an almost complete skeleton was unearthed and named Oreopithecus bambolii (see Hominin evolution becoming a thicket, January 2013). Despite dozens of specimens having been found in different localities, the creature was largely ignored in subsequent debate about human origins, until 1990 when it was discovered that not only could Oreopithecus walk on two legs, albeit differently from humans, it had relatively small canine teeth and its hands were like those of hominins, capable of a precision grip. Dated at 7 to 9 Ma, it may lie further back on the descent path of hominins; but it lived in Europe not Africa. Now the plot has thickened, for another primate has emerged from a clay pit in Bavaria, Germany (Böhme, M. and 8 others 2019. A new Miocene ape and locomotion in the ancestor of great apes and humans. Nature, online publication; DOI: 10.1038/s41586-019-1731-0).

Danuvius
Bones from 4 Danuvius guggenmosi individuals. Note the diminutive sizes compared with living apes (Credit: Christoph Jäckle)

Danuvius guggenmosi lived 11.6 Ma ago and its fossilised remains represent four individuals. Both femurs and a tibea (lower leg), together with the upper arm bones are preserved. The femurs and vertebrae strongly suggest that Danuvius could walk on two legs, indeed the vertebral shapes indicate that it had a flexible spine; essential for balance by supporting the weight of the torso over the pelvis. It also had long arms, pointing to its likely hanging in and brachiating through tree canopies. Maybe it had the benefit of two possible lifestyles; arboreal and terrestrial. Its discoverers do not go that far, suggesting that it probably lived entirely in trees using both forms of locomotion in ‘extended limb clambering’. It may not have been alone, another younger European primate found in the Miocene of Hungary, Rudapithecus hungaricus, may also have had similar clambering abilities, as might have Oreopithecus.

There is sure to be a great deal of head scratching among palaeoanthropologists, now that three species of Miocene primate seem – for the moment – to possess  ‘prototype specifications’ for early entrants on the evolutionary path to definite hominins. Questions to be asked are ‘If so, how did any of them cross the geographic barrier to Africa; i.e. the Mediterranean Sea?’, ‘Did the knuckle-walking chimps evolve from a bipedal common ancestor shared with hominins?, ‘Did bipedalism arise several times?’. The first may not have been as difficult as it might seem (see Africa_Europe exchange of faunas in the Late Miocene, July 2013). The Betic Seaway that once separated Iberia from NW Africa, in a similar manner to the modern Straits of Gibraltar, closed during the Miocene after a ‘mild’ tectonic collision that threw up the Betic Cordillera of Southern Spain. Between 5.6 and 5.3 Ma there was a brief ‘window of opportunity’ for the crossing, that ended with one of the most dramtic events in the Cenozoic Era; the Zanclean Flood, when the Atlantic burst through what is now the Straits of Gibraltar cataclysmically to refill the Mediterranean .

See also: Barras, C. 2019. Ancient ape offers clues to evolution of two-legged walking. Nature, v. 575, online; Kivell, T.L. 2019. Fossil ape hints at how walking on two feet evolved. Nature, v. 575, online; DOI: 10.1038/d41586-019-03347-0

Ancient footprints

To see traces of where our forebears walked, such as the famous Australopithecus afarensis trackway at Laetoli in Tanzania, the footprints of Neanderthal children in 350 ka old Italian volcanic ash (The first volcanologists? Earth Pages March 2003) or even those of Mesolithic families in estuarine mud is about as heart stopping as it gets for a geologist. But imagine the astonishment of members of a multinational team working on Miocene shore-line sediments on Crete when they came upon a bedding surface covered with what are almost certainly the footprints of another bipedal animal from 5.7 Ma ago (Gierliński, G.D. et al. 2017. Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete? Proceedings of the Geologists’ Association, online; https://doi.org/10.1016/j.pgeola.2017.07.006). Trackways preserve a few moments in time, however old they are and the chances of their being preserved are very small, yet they can supply information that is lost from even the best preserved fossil, such as gait, weight, speed and so forth.

Untitled-4
Track bearing surface; (b) two footprints in 5.7 Ma old Miocene sediments at Trachilos, Crete (credit: Gierliński, G.D. et al. 2017; Figures 2 and 8)

The tracks clearly indicate that whatever left them was bipedal and lacked claws, and closely resemble those attributed to A. afarensis at Laetoli in a 3.7 Ma old volcanic ash. What they do not resemble closely are those of non-hominin modern primates, such as chimpanzees. They are diminutive compared with adult modern human prints, being about 12.5 cm long (equivalent to a UK child’ shoe size 4 – US size 4.5, EU 20) and about a third to half the size of those at Laetoli. Were they around the age of those at Laetoli or younger there seems little doubt that they would be widely interpreted as being of hominin origin. But being from an island in the Mediterranean as well as far from sites in Africa that have yielded Miocene hominins (Ardipithecus kadabba from Ethiopia, Orrorin from Kenya and Sahelanthropus from Chad),  such an interpretation is bound to create controversy. Somewhat less controversial might be to regard them as having been created by a late-Miocene primate that convergently evolved a hominin-like upright gait and foot. Being preserved in what seem to be coastal marine sediments, there is probably little chance of body fossils being preserved in the exposed horizon. Since foot bones are so fragile, even if a primate fossil is discovered in the late Miocene of Crete the chances of resolving the issue are pretty remote. Yet fossil primate specialists will undoubtedly beat a well-trodden path to the Trachilos site near Kissamos on Crete