How changes in the Earth System have affected human evolution, migration and culture

Refugees from the Middle East migrating through Slovenia in 2015. Credit: Britannica

During the Pliocene (5.3 to 2.7 Ma) there evolved a network of various hominins, with their remains scattered across both the northern and southern parts of that continent. The earliest, though somewhat disputed hominin fossil Sahelanthropus tchadensis hails from northern Chad and lived  around 7 Ma ago, during the late Miocene, as did a similarly disputed creature from Kenya Orrorin tugenensis (~5.8 Ma). The two were geographically separated by 1500 km, what is now the Sahara desert and the East African Rift System.  The suggestion from mtDNA evidence that humans and chimpanzees had a common ancestor, the uncertainty about when it lived (between 13 to 5 Ma) and what it may have looked like, let alone where it lived, makes the notion debateable. There is even a possibility that the common ancestor of humans and the other anthropoid apes may have been European. Its descendants could well have crossed to North Africa when the Mediterranean Sea had been evaporated away to form the thick salt deposits that now lie beneath it: what could be termed the ‘Into Africa’ hypothesis. The better known Pliocene hominins were also widely distributed in the east and south of the African continent. Wandering around was clearly a hominin predilection from their outset. The same can be said about humans in the general sense (genus Homo) during the Early Pleistocene when some of them left Africa for Eurasia. Artifacts dated at 2.1 Ma have been found on the Loess Plateau of western China, and Georgia hosts the earliest human remains known from Eurasia. Since them H. antecessor, heidelbergensis, Neanderthals and Denisovans roamed Eurasia. Then, after about 130 ka, anatomically modern humans progressively populated all continents, except Antarctica, to their geographic extremities and from sea level to 4 km above it.

There is a popular view that curiosity and exploration are endemic and perhaps unique to the human line: ‘It’s in our genes’. But even plants migrate, as do all animal species. So it is best to be wary of a kind of hominin exceptionalism or superior motive force. Before settled agriculture, simply diffusion of populations in search of sustenance could have achieved the enormous migrations undertaken by all hominins: biological resources move and hunter gatherers follow them. The first migration of Homo erectus from Africa to northern China by way of Georgia seems to taken 200 ka at most and covered about ten thousand kilometres: on average a speed of only 50 m per year! That achievement and many others before and later were interwoven with the evolution of brain size, cognitive ability, means of communication and culture. But what were the ultimate drivers? Two recent papers in the journal Nature Communications make empirically-based cases for natural forces driving the movement of people and changes in demography.

The first considers hominin dispersal in the Palaearctic biogeographic realm: the largest of eight originally proposed by Alfred Russel Wallace in the late 19th century that encompasses the whole of Eurasia and North Africa (Zan, J. et al. 2024. Mid-Pleistocene aridity and landscape shifts promoted Palearctic hominin dispersals. Nature Communications, v. 15, article 10279; DOI: 10.1038/s41467-024-54767-0). The Palearctic comprises a wide range of ecosystems: arid to wet, tropical to arctic. After 2 Ma ago, hominins moved to all its parts several times. The approach followed by Zan et al. is to assess the 3.6 Ma record of the thick deposits of dust carried by the perpetual westerly winds that cross Central Asia. This gave rise to the huge (635,000 km2) Loess Plateau. At least 17 separate soil layers in the loess have yielded artefacts during the last 2.1 Ma. The authors radiocarbon dated the successive layers of loess in Tajikistan (286 samples) and the Tarim Basin (244 samples) as precisely as possible, achieving time resolutions of 5 to 10 ka and 10 to 20 ka respectively. To judge variations in climate in these area they also measured the carbon isotopic proportions in organic materials preserved within the layers. Another climate-linked metric that Zan et al. is a time series showing the development of river terraces across Eurasia derived from the earlier work of many geomorphologists. The results from those studies are linked to variations through time in the numbers of archaeological sites across Eurasia that have yielded hominin fossils, stone tools and signs of tool manufacture, many of which have been dated accurately.

The authors use sophisticated statistics to find correlations between times of climatic change and the signs of hominin occupation. Episodes of desertification in Palaearctic Eurasia clearly hindered hominins’ spreading across the continent either from west to east of vice versa. But there were distinct, periodic windows of climatic opportunity for that to happen that coincide with interglacial episodes, whose frequency changed at the Mid Pleistocene Transition (MPT) from about 41 ka to roughly every 100 ka. That was suggested in 2021 to have arisen from an increased roughness of the rock surface over which the great ice sheets of the Northern Hemisphere moved. This suppressed the pace of ice movement so that the 41 ka changes in the tilt of the Earth’s rotational axis could no longer drive climate change during the later Pleistocene, despite the fact that the same astronomical influence continued. The succeeding ~100 ka pulsation may or may not have been paced by the very much weaker influence of Earth changing orbital eccentricity. Whichever, after the MPT climate changes became much more extreme, making human dispersal in the Palearctic realm more problematic. Rather than hominin’s evolution driving them to a ‘Manifest Destiny’ of dominating the world vastly larger and wider inorganic forces corralled and released them so that, eventually, they did.

Much the same conclusion, it seems to me, emerges from a second study that covers the period since ~ 9 ka ago when anatomically modern humans transitioned from a globally dominant hunter-gatherer culture to one of ‘managing’ and dominating ecosystems, physical resources and ultimately the planet itself. (Wirtz, K.W et al. 2024. Multicentennial cycles in continental demography synchronous with solar activity and climate stability. Nature Communications, v. 15, article 10248; DOI: 10.1038/s41467-024-54474-w). Like Zan et al., Kai Wirtz and colleagues from Germany, Ukraine and Ireland base their findings on a vast accumulated number (~180,000) of radiocarbon dates from Holocene archaeological sites from all inhabited continents. The greatest number (>90,000) are from Europe. The authors applied statistical methods to judge human population variations since 11.7 ka in each continental area. Known sites are probably significantly outweighed by signs of human presence that remain hidden, and the diligence of surveys varies from country to country and continent to continent: Britain, the Netherlands and Southern Scandinavia are by far the best surveyed. Given those caveats, clearly this approach gives only a blurred estimate of population dynamics during the Holocene. Nonetheless the data are very interesting.

The changes in population growth rates show distinct cyclicity during the Holocene, which Wirtz et al. suggest are signs of booms and busts in population on all six continents. Matching these records against a large number of climatic time series reveals a correlation. Their chosen metric is variation in solar irradiance: the power per unit area received from the Sun. That has been directly monitored only over a couple of centuries. But ice cores and tree rings contain proxies for solar irradiance in the proportions of the radioactive isotopes 10Be and 14C contained in them respectively. Both are produced by the solar wind of high-energy charged particles (electrons, protons and helium nuclei or alpha particles) penetrating the upper atmosphere. The two isotopes have half-lives long enough for them to remain undecayed and thus detectable for tens of thousand years. Both ice cores and tree rings have decadal to annual time resolutions. Wirtz et al. find that their crude estimates of booms and busts in human populations during the Holocene seem closely to match variations in solar activity measured in this way. Climate stability favours successful subsistence and thus growth in populations. Variable climatic conditions seem to induce subsistence failures and increase mortality, probably through malnutrition.

A nice dialectic clearly emerges from these studies. ‘Boom and bust’ as regards populations in millennial and centennial to decadal terms stem from climate variations. Such cyclical change thus repeatedly hones natural selection among the survivors, both genetically and culturally, increasing their general fitness to their surroundings. Karl Marx and Friedrich Engels would have devoured these data avidly had they emerged in the 19th century. I’m sure they would have suggested from the evidence that something could go badly wrong – negation of negation, if readers care to explore that dialectical law further . . . And indeed that is happening. Humans made ecologically very fit indeed in surviving natural pressures are now stoking up a major climatic hiccup, or rather the culture and institutions that humans have evolved are doing that.

The Mid-Pleistocene Transition: when glacial cycles changed to 100 ka

Before about a million years ago the Earth’s overall climate repeatedly swung from warm to cool roughly every 41 thousand years. This cyclicity is best shown by the variation of oxygen isotopes in sea-floor sediments. That evidence stems from the tendency during evaporation at the ocean surface for isotopically light  oxygen (16O) in seawater to preferentially enter atmospheric water vapour relative to 18O.  During cool episodes more water vapour that falls as snow at high latitudes fails to melt, so that glaciers grow. Continental ice sheets therefore extract and store 16O so that the proportion of the heavier 18O increases in the oceans. This shift shows up in the calcium carbonate (CaCO­3) shells of surface-dwelling organisms whose shells are preserved in sea-floor sediment. When the climate warms, the ice sheets melt and return the excess of 16O back to ocean-surface water, again marked by changed oxygen isotope proportions in plankton shells. The first systematic study of sea-floor oxygen isotopes over time revolutionised ideas about ancient climates in much the same way as sea-floor magnetic stripes revealed the existence of plate tectonics. Both provided incontrovertible explanations for changes observed in the geological record. In the case of oxygen isotopes climatic cyclicity could be linked to changes in the Earth’s orbital and rotational behaviour: the Milankovich Effect.

Glacial-interglacial cycles during the Pleistocene

The 41 ka cycles reflect periodic changes in the angle of the Earth’s rotational axis (obliquity), which have the greatest effect on how much solar heating occurs at high latitudes. However, between about 1200 and 600 ka the fairly regular, moderately intense 41 ka climate cycles shifted to more extreme, complex and longer 100 ka cycles at the ‘Mid-Pleistocene Transition’ (MPT). They crudely match cyclical variations in the shape of Earth’s orbit (eccentricity), but that has by far the least influence over seasonal solar heating. Moreover, modelling of the combined astronomical climate influences through the transition show little, if any, sign of any significant change in external climatic forcing. Thirty years of pondering on this climatic enigma has forced climatologists to wonder if the MPT was due to some sort of change in the surface part of the Earth system itself.

There are means of addressing the general processes at the Earth’s surface and how they may have changed by using other aspects of sea-floor geochemistry (Yehudai, M. and 8 others 2021. Evidence for a Northern Hemispheric trigger of the 100,000-y glacial cyclicity. Proceedings of the National Academy of Sciences, v. 118, article e2020260118; DOI: 10.1073/pnas.2020260118). For instance the ratio between the abundance of the strontium isotope 87Sr to that of 86Sr in marine sediments tells us about the progress of continental weathering around a particular ocean basin. The 87Sr/ 86Sr ratio is higher in rocks making up the bulk of the crystalline continental crust than that in basalts of the oceanic crust. That ratio is currently uniform throughout all ocean water. During the Cenozoic Era the ratio steadily increased in sea-floor sediments, reflecting the continual weathering and erosion of the continents. In the warm Pliocene (5.3 to 2.8 Ma) 87Sr/ 86Sr remained more or less constant, but began increasing again at the start of the Pleistocene with the onset of glaciation in the Northern Hemisphere. At about 1450 ka it began to increase more rapidly suggesting increased weathering, and then settled back to its earlier Pleistocene rate after 1100 ka. Another geochemical contrast between the continental and oceanic crust lies in the degree to which the ratio of two isotopes of neodymium (143Nd/144Nd) in rocks deviates from that in the Earth’s mantle – modelled from meteorite geochemistry – a measure signified by ЄNd. Magmatic rocks and young continental rocks have positive ЄNd values, but going back in time continental crust has increasingly negative ЄNd.

Yehudai et al analysed cores from deep-sea sediments that had been drilled between 41°N and 43°S in the Atlantic Ocean floor. They targeted layers designated as glacial and interglacial from their oxygen isotope geochemistry at different levels in the cores to check how ЄNd varied with time. The broad variations within each core look much the same, although at increasingly negative values from south to north, except in one case. The data from the most northerly Atlantic core show far more negative values of ЄNd, in both glacial and interglacial layers at around 950 ka ago, than do cores further to the south. The authors interpret this anomaly as showing a sudden increase in the amount of very old continental rocks – with highly negative ЄNd – that had become exposed at and ground from the base of the great northern ice sheets of North America, Greenland and Scandinavia. At present, the shield areas where the great ice sheets occurred until about 11 ka are almost entirely crystalline Precambrian basement, including the most ancient rocks that are known. Although broadly speaking the shields now have low relief, they are extremely rugged terrains of knobbly basement outcrops and depressions filled with millions of lakes. In the earlier Cenozoic they were covered by younger sedimentary rocks and soils formed by deep weathering, with less-negative ЄNd values. The authors conclude that around 950 ka that younger cover had largely been removed by glacial every every 41 ka or so since about 2.6 Ma ago, when glaciation of the Northern Hemisphere began.

The surface on which the North American ice sheet moved – typical Canadian Shield.

So what follows from that ЄNd anomaly? Yehudai et al suggest that in earlier Pleistocene times each successive ice sheet rested on soft rock; i.e. their bases were well lubricated. As a result, glaciers quickly reached the coast to break up and melt as icebergs drifted south. Exposure of the deeper, very resistant crystalline basement resulted in much more rugged base, as can be seen in northern Canada and Scandinavia today. Friction at their bases suddenly increased, so that much more ice was able to build up on the great shields surrounding the Arctic Ocean than had previously been possible. Shortly after 950 ka the sea-floor cores also reveal that deep ocean circulation weakened significantly in the following 100 ka. The influence on climate of regular, 41 ka changes in the tilt of the Earth’s rotational axis could therefore not be sustained in the later Pleistocene. The ice sheets could neither melt nor slide into the sea sufficiently quickly; indeed, bigger and more durable ice sheets would reflect away more solar heating than was previously possible as glacial gave way to interglacial. The 41 ka astronomical ‘pacemaker’ still operated, but ineffectually. A new and much more complex climate cyclicity set in. Insofar as climate change became stabilised, an overall ~100 ka pulsation emerged. Whether or not this fortuitously had the same pace as the weak influence of Earth’s changing orbital eccentricity remains to be addressed. The climate system just might be too complicated and sensitive for us ever to tell: it may even have little relevance in a climatically uncertain future.

See also: Why did glacial cycles intensify a million years ago? Science Daily, 8 November 2021.