The earliest humans in Tibet

Modern Tibetans thrive in the rarefied air at altitudes above 4 km partly because they benefit from a genetic mutation of the gene EPAS1, which regulates haemoglobin production. Surprisingly, the segment of Tibetan’s DNA that contains the mutation matches that present in the genome of an undated Denisovan girl’s finger bone found in the eponymous Siberian cave. The geneticists who made this discovery were able to estimate that Tibetans inherited the entire segment sometime in the last 40 thousand years through interbreeding with Denisovans, who probably were able to live at high altitude too. Wherever and whenever this took place the inheritance was retained because it clearly helped those who carried it to thrive in Tibet. The same segment is present in a few percent of living Han Chinese people, which suggests their ancestors and those of the Tibetans were members of the same group some 40 ka ago, most of the Han having lost the mutation subsequently.

That inheritance would have remained somewhat mysterious while the existing evidence for the colonisation of the Tibetan Plateau suggested sometime in the Holocene, possibly by migrating early farmers. A single archaeological site at 4600 m on the Plateau has changed all that (Zhang, X.L. and 15 others 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, v.  362, p. 1049-1051; DOI: 10.1126/science.aat8824). The dig at Nwya Devu, which lies 250 km NW of Lhasa, has yielded a sequence of sediments (dated by optically stimulated luminescence at between 45 to 18 thousand years) that contains abundant stone tools made from locally occurring slate. The oldest coincides roughly with the age of the earliest anatomically modern human migrants into northern China, so the earliest Tibetans may well have been a branch of that same group of people, as suggested by the DNA of modern Tibetan and Han people. However, skeletal remains of both humans and their prey animals are yet to emerge from Nwya Devu, which leaves open the question of who they were. Anatomically modern humans or archaic humans, such as Denisovans?

The tools do not help to identify their likely makers. Slate is easy to work and typically yields flat blades with sharp, albeit not especially durable, edges; they are disposable perhaps explaining why so many were found at Nwya Devu. None show signs of pressure flaking that typify tools made from harder, more isotropic rock, such as flint. Yet they include a variety of use-types: scrapers; awls; burins and choppers as well as blades. The lack of associated remains of prey or hearths is suggested by the authors to signify that the site was a workshop; perhaps that will change with further excavation in the area. The age range suggests regular, if not permanent, occupancy for more than 20 ka

Related articles: Gibbons, A. 2014. Tibetans inherited high-altitude gene from ancient human. Science News,2 July 2014, Zhang J-F. & Dennell, R. 2018. The last of Asia conquered by Homo sapiens. Science, v. 362, p. 992-993; DOI: 10.1126/science.aav6863.

Read more on Human evolution and Migrations