It is widely thought that anatomically modern humans (AMH) began to diffuse out of Africa during the climatic cooling that followed the last interglacial episode. Periods of build-up of ice sheets, or stadials, also saw falls in sea level, which would have left shallow seas dry and easily crossed. The weight of evidence seems to point towards the narrowing of the Red Sea at the Straits of Bab el Mandab between modern Eritrea and the Yemen. Because the Red Sea spreading axis goes onshore through the Afar region of Ethiopia further north, the Straits today are shallow. Between about 70 and 60 ka, during a major stadial, much of the Bab el Mandab would have been dry. Dating of the earliest AMH remains in Asia and Australasia seems to suggest that the move out of Africa probably began around that time. But, of course, that presupposes the AMH fossils being the oldest in existence, although some would claim that genetic evidence also supports a 70-60 ka migration. Yet, AMH human remains dated at around 100 ka have been found in the Middle East on a route that would also lead out of Africa, but for the major problem of crossing deserts of modern Syria and Iraq. The supposed desert barrier has led many to suggest that the earlier venture into the Levant met a dead end. Should AMH fossils older than 70 ka turn up in Eurasia or Australasia then a single migration becomes open to doubt.

It appears that challenge to what has become palaeoanthropological orthodoxy has emerged (Bae, C.J. et al. 2014. Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quaternary International, In Press). Scientists from the US, China and Australia found two molar teeth within calcite flowstone in Lunadong (‘dong’ means ‘cave’). That speleothem is amenable to uranium-series dating, and has yielded ages between 70 and 127 ka. That antiquity does open up the possibility of earlier migration, perhaps during the interglacial that ended at about 115 ka when sea levels would have stood about as high as it does nowadays (in fact it was only after about 80 ka that it stood low enough to make a move across the Bab el Mandab plausible). If that were the case, the migration route would have more likely been through the Middle East, perhaps along the Jordan valley and thence to the east. Had there been greater rainfall over what is now desert then there would have been no insurmountable barrier to colonisation of Asia.
These teeth are not the only evidence for earlier entry of AMH into east Asia; a date of 66 ka for a modern human toe bone was recently reported from the Philippines. Yet many experts remain unconvinced by teeth alone, especially from east Asia where earlier humans had evolved since first colonisation as early as 1.8 Ma ago. There are other pre-70 ka east Asian bones with more convincing AMH provenance, however.
There is another approach to the issue of earlier Out of Africa migration; one resting on theoretical modelling of the observed genetic and morphological variation among living Eurasians, especially the decreasing diversity proceeding eastwards (Reyes-Centeno, H. et al. 2014. Genomic and cranial phenotype data support multiple modern human dispersals from Africa and a southern route into Asia. Proceedings of the National Academy of Sciences, v. 111, p. 7248-7253. doi: 10.1073/pnas.1323666111). The authors, from Germany, Italy and France, challenge the single-exit hypothesis based on genetic data, suggesting that those data are also commensurate with several Out of Africa dispersals beginning as early as 130 ka. They favour the Bab el Mandab exit point and migration around Eurasia at that time when sea-level was extremely low during a glacial maximum. They hint at the ancestors of living native Australians and Melanesians being among those first to leave Africa, other Asian and European populations having dispersed from a later wave.