
At present the central areas of the oceans are wet deserts; too depleted in nutrients to support the photosynthesising base of a significant food chain. The key factor that is missing is dissolved divalent iron that acts as a minor, but vital, nutrient for phytoplankton. Much of the soluble iron that does help stimulate plankton ‘blooms’ emanates from the land surface in wind blown dust (Palaeoclimatology September 2011) or dissolved in river water. A large potential source is from hydrothermal vents on the ocean floor, which emit seawater that has circulated through the basalts of the oceanic crust. Such fluids hydrate the iron-rich mafic minerals olivine and pyroxene, which makes iron available for transport. The fluids originate from water held in the muddy, organic-rich sediments that coat the ocean floor, and have lost any oxygen present in ocean-bottom water. Their chemistry is highly reducing and thereby retains soluble iron liberated by crustal alteration to emanate from hydrothermal vents. Because cold ocean-bottom waters are oxygenated by virtue of having sunk from the surface as part of thermohaline circulation, it does seem that ferrous iron should quickly be oxidised and precipitated as trivalent ferric compounds soon after hydrothermal fluids emerge. However, if some was able to rise to the surface it could fertilise shallow ocean water and participate in phytoplankton blooms, the sinking of dead organic matter then effectively burying carbon beneath the ocean floor; a ‘biological pump’ in the carbon cycle with a direct influence on climate. Until recently this hypothesis had little observational support.
The Southern Ocean surrounding Antarctica is iron-starved for the most part, but it does host huge phytoplankton blooms that are thought to play an important role in sequestration of CO2 from the atmosphere. Oceanographic research now benefits from semi-autonomous buoys set adrift in the deep ocean. The most sophisticated (Argo floats ) are able to dive to 2 km below the surface, measuring variations of physical and chemical conditions with depth for long periods. There are 4,000 of them, owned by several countries. Two of them drifted with surface currents across the line of the Southwest Indian Ridge through waters thought to be depleted in phytoplankton, despite having high nitrate, phosphate and silica contents – major ‘fertilisers’ in water. They showed up ‘spikes’ in chlorophyll concentrations in the upper levels of the Southern Ocean (Ardyna, M. and 11 others 2019. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nature Communications, 5 June 2019, online; DOI: 10.1038/s41467-019-09973-6). Their location relative to a large cluster of hydrothermal vents on the Southwest Indian Ridge was ‘downstream’ of them in the circum-Antarctic Current, but remote from any known terrestrial source of iron (continental shelves, dust deposition melting sea ice). Earlier oceanographic surveys that detected anomalous helium isotope, typical of emanations from the mantle, show that hydrothermal-vent water moves through the two areas. Although the Argo floats are equipped for neither helium nor iron measurements, it is likely that the blooms benefitted from hydrothermal iron. Modelling of the likely current dispersion of material in the hydrothermal plumes also outlines a large area of ocean where iron fertilisation may encourage regular blooms where they would otherwise be highly unlikely. Unfortunately, the study does not include any direct evidence for elevated soluble iron.
One thing that the study does foster is renewed interest in deliberate iron-fertilisation of the oceans to speed up the ‘biological pump’ as a means of managing global warming (Boyd, P. & Vivian, C. 2019. Should we fertilize oceans or seed clouds? No one knows. Nature, v. 570, p. 155-157; doi: 10.1038/d41586-019-01790-7). Small scale pilots of such ‘geoengineering’ have been tried, but raised outcries from environmental groups. Other than detecting, or hinting at, soluble iron from a deep natural source, scientific research has provided scanty evidence of what iron-seeding at the surface might do. There could be unexpected consequences, such as methane emission from decay of the blooms – a worse greenhouse gas than carbon dioxide.
See also: An iron age for climate engineering? (Palaeoclimatology, July 2007); Dust in the wind: North Pacific Ocean fertilized by iron in Asian dust ( National Science Foundation 2019)
One thought on “Soluble iron, black smokers and climate”