Impact melts and their destination

The work done by an asteroid or a comet that hits the Earth is most obviously demonstrated by the size of the crater that it creates on impact, should it have survived erosion and/or burial by sediments. Since some is done in flinging material away from the impact, the furthest point at which ejecta land is also a rough measure of the power of the hit. All this and much more derived from the kinetic energy of the object, which from Newton’s laws of motion amounts to half the product of the body’s mass and the square of its speed (mv2/2). It’s the speed that confers most energy; doubling the speed quadruples the energy. At a minimum, the speed of an object from far-off in space is that due to acceleration by the Earth’s gravitational field; the same as Earth’s escape velocity (about 11.2 km s-1). In March 1989 Earth had a close encounter with Newton’s laws writ large; an asteroid about 500 m across passed us with just half a million kilometres to spare. Moving at 20 km s-1 it carried kinetic energy of around 4 x 1019J. Had it hit, all of this immense amount would have been delivered in about a second giving a power of 4 x 1019 W. That is more than two hundred times greater than the power of solar heating of the day-side of the Earth. A small part of that power would melt quite a lot of rock.

Vredefort Dome, Free State, South Africa. Imag...
Vredefort Dome impact structure (credit: Wikipedia)

As well as the glass spherules that are one of the hallmarks of impact ejecta on Earth and more so on the Moon’s surface, some of the larger known impact craters are associated with various kinds of glassy rock produced by instantaneous melting. Some of this melt-rock occurs in thin dykes, but sometimes there is an entire layer of once molten ‘country’ rock at the impact site. The most spectacular is in the Manicougan crater in Quebec, Canada. In fact a 1 km thick impact-melt sheet dominates most of the 90 km wide structure and it is reputed to be the most homogeneous large rock mass known, being a chemical average of every rock type involved in the Triassic asteroid strike. Not all craters are so well endowed with an actual sheet of melt-rock. This has puzzled some geologists, especially those who studied the much larger (160 km) Vredfort Dome in South Africa, which formed around 2 billion years ago. As the name suggests this is now a positive circular topographic anomaly, probably due to rebound and erosional unloading, the structure extending down 20 km into the ancient continental lithosphere of the Kaapvaal craton. Vredfort has some cracking dykes of pseudotachylite but apparently no impact melt sheet. It has vanished, probably through erosion, but a relic has been found (Cupelli, C.L. et al. 2014. Discovery of mafic impact melt in the centre of the Vredfort dome: Archetype for continental residua of early Earth cratering? Geology, v. 42, p. 403-406). One reason for it having gone undiscovered until now is that it is mafic in composition, and resembles an igneous gabbro intrusion. Isotope geochemistry refutes that mundane origin. It is far younger than the rocks that were zapped, and may well have formed as huge energy penetrated to the lower crust and even the upper mantle to melt a sizeable percentage of 2.7 to 3.0 Ga old mafic and ultramafic rock.

Oddly, the same issue of Geology contains an article that also bears on the Vredfort Dome structure (Huber, M.S. et al. 2014. Impact spherules from Karelia, Russia: Possible ejecta from the 2.02 Ga Vredfort impact event. Geology, v. 42, p. 375-378). Drill core from a Palaeoproterozoic limestone revealed millimetre-sized glass droplets containing excess iridium – an element at high concentration in a variety of meteorites. The link to Vredfort is the age of the sediments, which are between 1.98 and 2.05 Ga, neatly bracketing the timing of the large South African impact. Using reasonably well-constrained palaeogeographic positions at that time for Karelia and the Kaapvaal craton suggests that the glassy ejecta, if indeed they are from Vredfort, must have been flung over 2500 km.

Enhanced by Zemanta

One thought on “Impact melts and their destination

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s