Impacts in the early Archaean

From the days when advocates of impacts by extraterrestrial objects as explanations of geological features were widely regarded as ‘whizz-bang artistes’ a great many hats have probably been eaten, albeit in closely guarded privacy. In 1986, when beds of glassy spherules similar to those found in lunar soil and in the K-T boundary sequence were reported from early Archaean greenstone belts in Australia and South Africa, and deduced to have formed by an impact, the authors, Donald Lowe of Stanford University, USA and colleagues, were pounced on by those who thought they could plausibly explain the very odd rocks by unremarkable, Earthly processes. Subsequent work on their geochemistry overwhelmingly supported their formation by an impact of a large carbonaceous chondrite asteroid. And at one site, the Barberton Mountain Land greenstone belt in northeastern South Africa, there was evidence for at least three such impacts formed in a 20 Ma period. In hindsight, given the lunar bombardment history that peaked between 4 and 3.8 Ga, early Archaean rocks were a great deal more likely to contain materials formed by giant impacts than less antiquated ones.

Barberton greenstone belt, South Africa (credit: Barberton World Heritage Site)
Barberton greenstone belt, South Africa (credit: Barberton World Heritage Site)

Lowe has been steadily working on his original idea since then, his enthusiasm drawing in others. The latest focus is on evidence for other likely consequences in the Archaean record of the vast power unleashed by incoming asteroids travelling at speeds around 15 km s-1 (Sleep, N.H. & Lowe, D.R. 2014. Physics of crustal fracturing and chertdike formation triggered by asteroid impact, ~3.26 Ga, Barbertongreenstone belt, South Africa. Geochemistry, Geophysics, Geosystems, v. 15, doi:10.1002/2014GC005229). The damage at Barberton not only produced spherule beds but opened fractures on the shallow sea bed into which liquefied sediments, including some spherules, were injected. These swarms of up to 10 m wide cherty dykes extend up to 100 m below what was then the sea floor strewn with impact spherules, and contain evidence of successive pulses of sediment injection.

Sleep and Lowe explain these dyke swarms as fractures caused by seismicity associated with a major impact. Their complexity suggests extreme shaking for upwards of 100 seconds; far longer than that from large, tectonic earthquakes. The fact that cracks opened to accommodate the sedimentary dykes indicates extension of the affected crust, which the authors suggest resulted from gravitational sliding of the shocked surface sediments down a gentle slope. Possibly the sediments, including the direct products of impact, the spherules, were swept into the cracks by currents associated with tsunamis induced by the impact.

Interestingly, the spherules and dykes formed upon crust largely formed of mafic to ultramafic lavas, yet volcanism following close on the heels of the impact event was of felsic composition. Did the impact trigger a shift locally from oceanic magmatism to that characteristic of island arcs; that is, did it start a new subduction zone?

Enhanced by Zemanta

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s