Fieldwork and geological education

In March 2013 EPN carried an item connected with the abandonment of field training at week-long summer schools by the UK’s Open University. After 40 years of geoscientific summer schools connected with courses at Levels-1, -2 and -3 anonymous performance statistics were available for thousands of students who had studied those OU Earth Science courses that offered summer-school experiences in the field, first as compulsory modules (1971-2001) then as an optional element (2002-2011) and finally with no such provision. The March 2013 item compared statistics for the three kinds of provision. It should be noted that the OU once had possibly the world’s largest throughput of degree-level geoscience students for a single higher educational institution.

After 2001, pass rates feel abruptly and significantly; in the Science Foundation Course the rate fell from an annual average of 69 to 54%, and in level-2 Geology from 65 to 55%. This was accompanied by a significant decrease in enrolment in equally and more popular geoscience courses that had never had a summer school element. The second statistical drop was of the order of 30 to 40%. It seemed that residential schools played a vital role in boosting confidence and reinforcing home studies, as well as transferring practical field skills. After further falls in enrolment since summer schools were removed from the curriculum in 2012, the OU is in the process of completely revising its geoscientific courses and attempting to substitute virtual, on-line field and lab ‘experiences’. Time will tell if it ever manages to reach its former level of success and acceptance

So, discovering that The Geological Society of America had surveyed attendees at its Annual Meetings (Petcovic, H.L. et al. 2014. Geoscientists’ perceptions of the value of undergraduate field education. GSA Today, v. 24 (July 2014), p. 4-10) piqued my interest. Almost 90% of those polled agreed that field studies should be a fundamental requirement of undergraduate programmes; very few agreed that becoming an expert geoscientist is possible without field experience. Field courses develop the skills and knowledge specific to ‘doing’ geoscience; teach integration of fundamental concepts and broaden general understanding of them; inculcate cooperation, time management and independent thinking that have broader applications. Fieldwork also has personal and emotional impacts: reinforcing positive attitudes to the subject; creating a geoscientific esprit de corps; helping students recognise their personal strengths and limitations. Then there is the aspect of enhanced employability, highlighted by all categories of respondents.

Set against these somewhat predictable sentiments among geoscientists are the increasing strains posed by cost, time commitment, and liability, as well as the fact that some potential students do not relish outdoor pursuits. Yet overall the broad opinion was that degree programmes should involve at least one field methods course as a requirement, with other non-compulsory opportunities for more advanced field training